phcpack_2.4.88_e448e94a/src/Ada/Tasking/test_mthessian_convolutions.adb

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
with duration_io;
with Ada.Calendar;
with Time_Stamps;
with Communications_with_User;           use Communications_with_User;
with Standard_Natural_Numbers;           use Standard_Natural_Numbers;
with Standard_Integer_Numbers_io;        use Standard_Integer_Numbers_io;
with Standard_Floating_Numbers;          use Standard_Floating_Numbers;
with Standard_Floating_Numbers_io;       use Standard_Floating_Numbers_io;
with Double_Double_Numbers;              use Double_Double_Numbers;
with Double_Double_Numbers_io;           use Double_Double_Numbers_io;
with Quad_Double_Numbers;                use Quad_Double_Numbers;
with Quad_Double_Numbers_io;             use Quad_Double_Numbers_io;
with Standard_Complex_Numbers;
with DoblDobl_Complex_Numbers;
with QuadDobl_Complex_Numbers;
with Standard_Complex_Matrices;
with DoblDobl_Complex_Matrices;
with QuadDobl_Complex_Matrices;
with QuadDobl_Complex_Vectors_cv;
with Standard_Complex_Poly_Systems;
with DoblDobl_Complex_Poly_Systems;
with QuadDobl_Complex_Poly_Systems;
with Standard_Complex_Solutions;
with Standard_System_and_Solutions_io;
with DoblDobl_Complex_Solutions;
with DoblDobl_System_and_Solutions_io;
with QuadDobl_Complex_Solutions;
with QuadDobl_System_and_Solutions_io;
with System_Convolution_Circuits;
with Random_Convolution_Circuits;        use Random_Convolution_Circuits;
with Evaluation_Differentiation_Errors;  use Evaluation_Differentiation_Errors;
with Hessian_Convolution_Circuits;       use Hessian_Convolution_Circuits;
with Jacobian_Convolution_Circuits;      use Jacobian_Convolution_Circuits;
with Multitasked_Hessian_Convolutions;   use Multitasked_Hessian_Convolutions;
with Standard_Newton_Convolutions;
with DoblDobl_Newton_Convolutions;
with QuadDobl_Newton_Convolutions;

package body Test_mtHessian_Convolutions is

  procedure Write_Singular_Values 
              ( values : in Standard_Complex_VecVecs.VecVec;
                jmvals : in Standard_Complex_Vectors.Vector ) is

    lnk : Standard_Complex_Vectors.Link_to_Vector;
    val : double_float;

  begin
    for k in values'range loop
      lnk := values(k);
      for i in lnk'range loop
        val := Standard_Complex_Numbers.REAL_PART(lnk(i));
        put(val,3);
      end loop;
      new_line;
    end loop;
    for i in jmvals'range loop
      val := Standard_Complex_Numbers.REAL_PART(jmvals(i));
      put(val,3);
    end loop;
    new_line;
  end Write_Singular_Values;

  procedure Write_Singular_Values 
              ( values : in DoblDobl_Complex_VecVecs.VecVec;
                jmvals : in DoblDobl_Complex_Vectors.Vector ) is

    lnk : DoblDobl_Complex_Vectors.Link_to_Vector;
    val : double_double;

  begin
    for k in values'range loop
      lnk := values(k);
      for i in lnk'range loop
        val := DoblDobl_Complex_Numbers.REAL_PART(lnk(i));
        put(" "); put(val,3);
      end loop;
      new_line;
    end loop;
    for i in jmvals'range loop
      val := DoblDobl_Complex_Numbers.REAL_PART(jmvals(i));
      put(" "); put(val,3);
    end loop;
    new_line;
  end Write_Singular_Values;

  procedure Write_Singular_Values 
              ( values : in QuadDobl_Complex_VecVecs.VecVec;
                jmvals : in QuadDobl_Complex_Vectors.Vector ) is

    lnk : QuadDobl_Complex_Vectors.Link_to_Vector;
    val : quad_double;

  begin
    for k in values'range loop
      lnk := values(k);
      for i in lnk'range loop
        val := QuadDobl_Complex_Numbers.REAL_PART(lnk(i));
        put(" "); put(val,3);
      end loop;
      new_line;
    end loop;
    for i in jmvals'range loop
      val := QuadDobl_Complex_Numbers.REAL_PART(jmvals(i));
      put(" "); put(val,3);
    end loop;
    new_line;
  end Write_Singular_Values;

  procedure Standard_Test
              ( dim : in integer32;
                s : in Standard_Speelpenning_Convolutions.Link_to_System;
                x : in Standard_Complex_VecVecs.Link_to_VecVec ) is

    use Standard_Complex_VecVecs;
    use Standard_Speelpenning_Convolutions;

    lnk : Standard_Complex_Vectors.Link_to_Vector;
    vx : Standard_Complex_Vectors.Vector(1..dim);
    A,U,V : Standard_Complex_Matrices.Matrix(1..dim,1..dim);
    e : Standard_Complex_Vectors.Vector(1..dim);
    svl : constant Standard_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    values : Standard_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    jm1vls,jm2vls : Standard_Complex_Vectors.Vector(1..dim);
    ans : character;
    otp : boolean;
    nbt : integer32 := 0;
    err,eta : double_float;
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup : Duration;

    use Ada.Calendar;

  begin
    new_line;
    put("Extra output wanted ? (y/n) ");
    Ask_Yes_or_No(ans);
    otp := (ans = 'y');
    for i in 1..dim loop
      lnk := x(i);
      vx(i) := lnk(0);
    end loop;
    put_line("Computing first without multitasking ...");
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,vx,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),vx,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    put_line("-> Elapsed time without multitasking :");
    Time_Stamps.Write_Elapsed_Time(standard_output,seristart,seristop);
    if otp
     then put_line("All singular values :"); Write_Singular_Values(svl,jm1vls);
    end if;
    loop
      new_line;
      put("Give the number of tasks (0 to exit) : "); get(nbt);
      exit when (nbt <= 0);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,vx,jm2vls,values,otp);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      put("-> Elapsed time with "); put(nbt,1); put_line(" tasks :");
      Time_Stamps.Write_Elapsed_Time(standard_output,multstart,multstop);
      if otp then
        put_line("All singular values computed by multitasking :");
        Write_Singular_Values(values,jm2vls);
      end if;
      err := Difference(svl,values);
      eta := Standard_Distance(jm2vls,values);
      put("The difference error : "); put(err,3); new_line;
      put("Estimate for the distance : "); put(eta,3); new_line;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        put("The speedup : ");
        duration_io.put(speedup,1,3); new_line;
      end if;
    end loop;
  end Standard_Test;

  procedure DoblDobl_Test
              ( dim : in integer32;
                s : in DoblDobl_Speelpenning_Convolutions.Link_to_System;
                x : in DoblDobl_Complex_VecVecs.Link_to_VecVec ) is

    use DoblDobl_Complex_VecVecs;
    use DoblDobl_Speelpenning_Convolutions;

    lnk : DoblDobl_Complex_Vectors.Link_to_Vector;
    vx : DoblDobl_Complex_Vectors.Vector(1..dim);
    A,U,V : DoblDobl_Complex_Matrices.Matrix(1..dim,1..dim);
    e : DoblDobl_Complex_Vectors.Vector(1..dim);
    svl : constant DoblDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    values : DoblDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    jm1vls,jm2vls : DoblDobl_Complex_Vectors.Vector(1..dim);
    ans : character;
    otp : boolean;
    nbt : integer32 := 0;
    err,eta : double_double;
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup : Duration;

    use Ada.Calendar;

  begin
    new_line;
    put("Extra output wanted ? (y/n) ");
    Ask_Yes_or_No(ans);
    otp := (ans = 'y');
    for i in 1..dim loop
      lnk := x(i);
      vx(i) := lnk(0);
    end loop;
    put_line("Computing first without multitasking ...");
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,vx,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),vx,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    put_line("-> Elapsed time without multitasking :");
    Time_Stamps.Write_Elapsed_Time(standard_output,seristart,seristop);
    if otp
     then put_line("All singular values :"); Write_Singular_Values(svl,jm1vls);
    end if;
    loop
      new_line;
      put("Give the number of tasks (0 to exit) : "); get(nbt);
      exit when (nbt <= 0);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,vx,jm2vls,values,otp);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      put("-> Elapsed time with "); put(nbt,1); put_line(" tasks :");
      Time_Stamps.Write_Elapsed_Time(standard_output,multstart,multstop);
      if otp then
        put_line("All singular values computed by multitasking :");
        Write_Singular_Values(values,jm2vls);
      end if;
      err := Difference(svl,values);
      eta := DoblDobl_Distance(jm2vls,values);
      put("The difference error : "); put(err,3); new_line;
      put("Estimate for the distance : "); put(eta,3); new_line;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        put("The speedup : ");
        duration_io.put(speedup,1,3); new_line;
      end if;
    end loop;
  end DoblDobl_Test;

  procedure QuadDobl_Test
              ( dim : in integer32;
                s : in QuadDobl_Speelpenning_Convolutions.Link_to_System;
                x : in QuadDobl_Complex_VecVecs.Link_to_VecVec ) is

    use QuadDobl_Complex_VecVecs;
    use QuadDobl_Speelpenning_Convolutions;

    lnk : QuadDobl_Complex_Vectors.Link_to_Vector;
    vx : QuadDobl_Complex_Vectors.Vector(1..dim);
    A,U,V : QuadDobl_Complex_Matrices.Matrix(1..dim,1..dim);
    e : QuadDobl_Complex_Vectors.Vector(1..dim);
    svl : constant QuadDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    values : QuadDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    jm1vls,jm2vls : QuadDobl_Complex_Vectors.Vector(1..dim);
    ans : character;
    otp : boolean;
    nbt : integer32 := 0;
    err,eta : quad_double;
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup : Duration;

    use Ada.Calendar;

  begin
    new_line;
    put("Extra output wanted ? (y/n) ");
    Ask_Yes_or_No(ans);
    otp := (ans = 'y');
    for i in 1..dim loop
      lnk := x(i);
      vx(i) := lnk(0);
    end loop;
    put_line("Computing first without multitasking ...");
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,vx,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),vx,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    put_line("-> Elapsed time without multitasking :");
    Time_Stamps.Write_Elapsed_Time(standard_output,seristart,seristop);
    if otp
     then put_line("All singular values :"); Write_Singular_Values(svl,jm1vls);
    end if;
    loop
      new_line;
      put("Give the number of tasks (0 to exit) : "); get(nbt);
      exit when (nbt <= 0);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,vx,jm2vls,values,otp);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      put("-> Elapsed time with "); put(nbt,1); put_line(" tasks :");
      Time_Stamps.Write_Elapsed_Time(standard_output,multstart,multstop);
      if otp then
        put_line("All singular values computed by multitasking :");
        Write_Singular_Values(values,jm2vls);
      end if;
      err := Difference(svl,values);
      eta := QuadDobl_Distance(jm2vls,values);
      put("The difference error : "); put(err,3); new_line;
      put("Estimate for the distance : "); put(eta,3); new_line;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        put("The speedup : ");
        duration_io.put(speedup,1,3); new_line;
      end if;
    end loop;
  end QuadDobl_Test;

  procedure Standard_Random_Test
              ( dim,deg,nbr,pwr : in integer32 ) is

    s : Standard_Speelpenning_Convolutions.Link_to_System;
    x : Standard_Complex_VecVecs.Link_to_VecVec;

  begin
    new_line;
    put_line("Generating a random Newton homotopy ...");
    Standard_Random_Newton_Homotopy(dim,deg,nbr,pwr,s,x);
    Standard_Test(dim,s,x);
  end Standard_Random_Test;

  procedure DoblDobl_Random_Test
              ( dim,deg,nbr,pwr : in integer32 ) is

    s : DoblDobl_Speelpenning_Convolutions.Link_to_System;
    x : DoblDobl_Complex_VecVecs.Link_to_VecVec;

  begin
    new_line;
    put_line("Generating a random Newton homotopy ...");
    DoblDobl_Random_Newton_Homotopy(dim,deg,nbr,pwr,s,x);
    DoblDobl_Test(dim,s,x);
  end DoblDobl_Random_Test;

  procedure QuadDobl_Random_Test
              ( dim,deg,nbr,pwr : in integer32 ) is

    s : QuadDobl_Speelpenning_Convolutions.Link_to_System;
    x : QuadDobl_Complex_VecVecs.Link_to_VecVec;

  begin
    new_line;
    put_line("Generating a random Newton homotopy ...");
    QuadDobl_Random_Newton_Homotopy(dim,deg,nbr,pwr,s,x);
    QuadDobl_Test(dim,s,x);
  end QuadDobl_Random_Test;

  procedure Standard_User_Test is

    use System_Convolution_Circuits;
    use Standard_Speelpenning_Convolutions;

    lp : Standard_Complex_Poly_Systems.Link_to_Poly_Sys;
    sols : Standard_Complex_Solutions.Solution_List;
    ls : Standard_Complex_Solutions.Link_to_Solution;
    dim,deg : integer32 := 0;

  begin
    new_line;
    put_line("Reading a polynomial system with solutions ...");
    Standard_System_and_Solutions_io.get(lp,sols);
    ls := Standard_Complex_Solutions.Head_Of(sols);
    dim := ls.n;
    new_line;
    put("Give the degree of the series : "); get(deg);
    declare
      c : constant Circuits(lp'range)
        := Make_Convolution_Circuits(lp.all,natural32(deg));
      s : constant Link_to_System := Create(c,dim,deg);
      scf : constant Standard_Complex_VecVecs.VecVec(1..dim)
          := Standard_Newton_Convolutions.Series_Coefficients(ls.v,deg);
      x : constant Standard_Complex_VecVecs.Link_to_VecVec
        := new Standard_Complex_VecVecs.VecVec'(scf);
    begin
      Standard_Test(dim,s,x);
    end;
  end Standard_User_Test;

  procedure DoblDobl_User_Test is

    use System_Convolution_Circuits;
    use DoblDobl_Speelpenning_Convolutions;

    lp : DoblDobl_Complex_Poly_Systems.Link_to_Poly_Sys;
    sols : DoblDobl_Complex_Solutions.Solution_List;
    ls : DoblDobl_Complex_Solutions.Link_to_Solution;
    dim,deg : integer32 := 0;

  begin
    new_line;
    put_line("Reading a polynomial system with solutions ...");
    DoblDobl_System_and_Solutions_io.get(lp,sols);
    ls := DoblDobl_Complex_Solutions.Head_Of(sols);
    dim := ls.n;
    new_line;
    put("Give the degree of the series : "); get(deg);
    declare
      c : constant Circuits(lp'range)
        := Make_Convolution_Circuits(lp.all,natural32(deg));
      s : constant Link_to_System := Create(c,dim,deg);
      scf : constant DoblDobl_Complex_VecVecs.VecVec(1..dim)
          := DoblDobl_Newton_Convolutions.Series_Coefficients(ls.v,deg);
      x : constant DoblDobl_Complex_VecVecs.Link_to_VecVec
        := new DoblDobl_Complex_VecVecs.VecVec'(scf);
    begin
      DoblDobl_Test(dim,s,x);
    end;
  end DoblDobl_User_Test;

  procedure QuadDobl_User_Test is

    use System_Convolution_Circuits;
    use QuadDobl_Speelpenning_Convolutions;

    lp : QuadDobl_Complex_Poly_Systems.Link_to_Poly_Sys;
    sols : QuadDobl_Complex_Solutions.Solution_List;
    ls : QuadDobl_Complex_Solutions.Link_to_Solution;
    dim,deg : integer32 := 0;

  begin
    new_line;
    put_line("Reading a polynomial system with solutions ...");
    QuadDobl_System_and_Solutions_io.get(lp,sols);
    ls := QuadDobl_Complex_Solutions.Head_Of(sols);
    dim := ls.n;
    new_line;
    put("Give the degree of the series : "); get(deg);
    declare
      c : constant Circuits(lp'range)
        := Make_Convolution_Circuits(lp.all,natural32(deg));
      s : constant Link_to_System := Create(c,dim,deg);
      scf : constant QuadDobl_Complex_VecVecs.VecVec(1..dim)
          := QuadDobl_Newton_Convolutions.Series_Coefficients(ls.v,deg);
      x : constant QuadDobl_Complex_VecVecs.Link_to_VecVec
        := new QuadDobl_Complex_VecVecs.VecVec'(scf);
    begin
      QuadDobl_Test(dim,s,x);
    end;
  end QuadDobl_User_Test;

  procedure Standard_Benchmark
              ( file : in file_type; nbruns,inc : in integer32;
                s : in Standard_Speelpenning_Convolutions.Link_to_System;
                x : in Standard_Complex_Vectors.Vector;
                verbose : in boolean := false ) is

    dim : constant integer32 := s.dim;
    A,U,V : Standard_Complex_Matrices.Matrix(1..dim,1..dim);
    e : Standard_Complex_Vectors.Vector(1..dim);
    svl : constant Standard_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    lnk : Standard_Complex_Vectors.Link_to_Vector;
    jm1vls : Standard_Complex_Vectors.Vector(1..dim);
    jm2vls : Standard_Complex_Vectors.Vector(1..dim);
    values : Standard_Complex_VecVecs.VecVec(1..dim);
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup :  Duration;
    nbt : integer32 := 2;

    use Ada.Calendar;

  begin
    if verbose
     then put_line(file,"Computing first without multitasking ...");
     else put_line(file,"double precision");
    end if;
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,x,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),x,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    if verbose then
      put_line(file,"-> Elapsed time without multitasking :");
      Time_Stamps.Write_Elapsed_Time(file,seristart,seristop);
      put_line(file,"running in double precision ...");
    else
      put(file,"  1 : ");
      duration_io.put(file,seri_elapsed,1,3); put_line(file," : 1.000");
    end if;
    for k in 1..nbruns loop
      values := Allocate(dim,dim);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,x,jm2vls,values,false);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      if verbose then
        put(file,"-> Elapsed time with "); put(file,nbt,1);
        put_line(file," tasks :");
        Time_Stamps.Write_Elapsed_Time(file,multstart,multstop);
      else
        put(file,nbt,3); put(file," : ");
        duration_io.put(file,mult_elapsed,1,3); put(file," : ");
      end if;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        if verbose
         then put(file,"The speedup : ");
        end if;
        duration_io.put(file,speedup,1,3); new_line(file);
      end if;
      nbt := nbt + inc;
      Standard_Complex_VecVecs.Clear(values);
    end loop;
  end Standard_Benchmark;

  procedure DoblDobl_Benchmark
              ( file : in file_type; nbruns,inc : in integer32;
                s : in DoblDobl_Speelpenning_Convolutions.Link_to_System;
                x : in DoblDobl_Complex_Vectors.Vector;
                verbose : in boolean := false ) is

    dim : constant integer32 := s.dim;
    A,U,V : DoblDobl_Complex_Matrices.Matrix(1..dim,1..dim);
    e : DoblDobl_Complex_Vectors.Vector(1..dim);
    svl : constant DoblDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    lnk : DoblDobl_Complex_Vectors.Link_to_Vector;
    jm1vls : DoblDobl_Complex_Vectors.Vector(1..dim);
    jm2vls : DoblDobl_Complex_Vectors.Vector(1..dim);
    values : DoblDobl_Complex_VecVecs.VecVec(1..dim);
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup :  Duration;
    nbt : integer32 := 2;

    use Ada.Calendar;

  begin
    if verbose
     then put_line(file,"Computing first without multitasking ...");
     else put_line(file,"double double precision");
    end if;
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,x,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),x,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    if verbose then
      put_line(file,"-> Elapsed time without multitasking :");
      Time_Stamps.Write_Elapsed_Time(file,seristart,seristop);
      put_line(file,"running in double double precision ...");
    else
      put(file,"  1 : ");
      duration_io.put(file,seri_elapsed,1,3); put_line(file," : 1.000");
    end if;
    for k in 1..nbruns loop
      values := Allocate(dim,dim);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,x,jm2vls,values,false);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      if verbose then
        put(file,"-> Elapsed time with "); put(file,nbt,1);
        put_line(file," tasks :");
        Time_Stamps.Write_Elapsed_Time(file,multstart,multstop);
      else
        put(file,nbt,3); put(file," : ");
        duration_io.put(file,mult_elapsed,1,3); put(file," : ");
      end if;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        if verbose
         then put(file,"The speedup : ");
        end if;
        duration_io.put(file,speedup,1,3); new_line(file);
      end if;
      nbt := nbt + inc;
      DoblDobl_Complex_VecVecs.Clear(values);
    end loop;
  end DoblDobl_Benchmark;

  procedure QuadDobl_Benchmark
              ( file : in file_type; nbruns,inc : in integer32;
                s : in QuadDobl_Speelpenning_Convolutions.Link_to_System;
                x : in QuadDobl_Complex_Vectors.Vector;
                verbose : in boolean := false ) is

    dim : constant integer32 := s.dim;
    A,U,V : QuadDobl_Complex_Matrices.Matrix(1..dim,1..dim);
    e : QuadDobl_Complex_Vectors.Vector(1..dim);
    svl : constant QuadDobl_Complex_VecVecs.VecVec(1..dim) := Allocate(dim,dim);
    lnk : QuadDobl_Complex_Vectors.Link_to_Vector;
    jm1vls : QuadDobl_Complex_Vectors.Vector(1..dim);
    jm2vls : QuadDobl_Complex_Vectors.Vector(1..dim);
    values : QuadDobl_Complex_VecVecs.VecVec(1..dim);
    seristart,seristop,multstart,multstop : Ada.Calendar.Time;
    seri_elapsed,mult_elapsed,speedup :  Duration;
    nbt : integer32 := 2;

    use Ada.Calendar;

  begin
    if verbose
     then put_line(file,"Computing first without multitasking ...");
     else put_line(file,"quad double precision");
    end if;
    seristart := Ada.Calendar.Clock;
    Singular_Values(s.crc,x,A,U,V,e,jm1vls);
    for i in 1..dim loop
      lnk := svl(i);
      Singular_Values(s.crc(i),x,A,U,V,e,lnk.all);
    end loop;
    seristop := Ada.Calendar.Clock;
    seri_elapsed := seristop - seristart;
    if verbose then
      put_line(file,"-> Elapsed time without multitasking :");
      Time_Stamps.Write_Elapsed_Time(file,seristart,seristop);
      put_line(file,"running in quad double precision ...");
    else
      put(file,"  1 : ");
      duration_io.put(file,seri_elapsed,1,3); put_line(file," : 1.000");
    end if;
    for k in 1..nbruns loop
      values := Allocate(dim,dim);
      multstart := Ada.Calendar.Clock;
      Multitasked_Singular_Values(nbt,s,x,jm2vls,values,false);
      multstop := Ada.Calendar.Clock;
      mult_elapsed := multstop - multstart;
      if verbose then
        put(file,"-> Elapsed time with "); put(file,nbt,1);
        put_line(file," tasks :");
        Time_Stamps.Write_Elapsed_Time(file,multstart,multstop);
      else
        put(file,nbt,3); put(file," : ");
        duration_io.put(file,mult_elapsed,1,3); put(file," : ");
      end if;
      if seri_elapsed + 1.0 /= 1.0 then
        speedup := seri_elapsed/mult_elapsed;
        if verbose
         then put(file,"The speedup : ");
        end if;
        duration_io.put(file,speedup,1,3); new_line(file);
      end if;
      nbt := nbt + inc;
      QuadDobl_Complex_VecVecs.Clear(values);
    end loop;
  end QuadDobl_Benchmark;

  procedure Benchmark ( dim,deg,nbr,pwr : in integer32 ) is

    qds : QuadDobl_Speelpenning_Convolutions.Link_to_System;
    dds : DoblDobl_Speelpenning_Convolutions.Link_to_System;
    d_s : Standard_Speelpenning_Convolutions.Link_to_System;
    qdx : QuadDobl_Complex_VecVecs.Link_to_VecVec;
    ddx : DoblDobl_Complex_VecVecs.Link_to_VecVec;
    d_x : Standard_Complex_VecVecs.Link_to_VecVec;
    qdlnk : QuadDobl_Complex_Vectors.Link_to_Vector;
    ddlnk : DoblDobl_Complex_Vectors.Link_to_Vector;
    dlnk : Standard_Complex_Vectors.Link_to_Vector;
    qdvx : QuadDobl_Complex_Vectors.Vector(1..dim);
    ddvx : DoblDobl_Complex_Vectors.Vector(1..dim);
    dvx : Standard_Complex_Vectors.Vector(1..dim);
    file : file_type;
    nbruns,inc : integer32 := 0;
 
  begin
    new_line;
    put("Give the number of multitasked runs : "); get(nbruns);
    put("Give the increment on the tasks : "); get(inc); skip_line;
    new_line;
    put_line("Reading the name of the output file ...");
    Read_Name_and_Create_File(file);
    new_line;
    put_line("See the output file for results ...");
    new_line;
    QuadDobl_Random_Newton_Homotopy(dim,deg,nbr,pwr,qds,qdx);
    dds := System_Convolution_Circuits.to_double_double(qds);
    ddx := QuadDobl_Complex_Vectors_cv.to_double_double(qdx);
    d_s := System_Convolution_Circuits.to_double(qds);
    d_x := QuadDobl_Complex_Vectors_cv.to_double(qdx);
    for i in 1..dim loop
      qdlnk := qdx(i); ddlnk := ddx(i); dlnk := d_x(i);
      qdvx(i) := qdlnk(0); ddvx(i) := ddlnk(0); dvx(i) := dlnk(0);
    end loop;
    Standard_Benchmark(file,nbruns,inc,d_s,dvx);
    DoblDobl_Benchmark(file,nbruns,inc,dds,ddvx);
    QuadDobl_Benchmark(file,nbruns,inc,qds,qdvx);
  end Benchmark;

  function Prompt_for_Precision return character is

    precision : character;

  begin
    new_line;
    put_line("MENU for the working precision :");
    put_line("  0. double precision");
    put_line("  1. double double precision");
    put_line("  2. quad double precision");
    put("Type 0, 1, or 2 to select the precision : ");
    Ask_Alternative(precision,"012");
    return precision;
  end Prompt_for_Precision;

  procedure Main is

    dim,deg,nbr,pwr : integer32 := 0;
    ans,precision : character;

  begin
    new_line;
    put_line("Testing the Hessian criterion ...");
    new_line;
    put("Generate a random system ? (y/n) "); Ask_Yes_or_No(ans);
    if ans = 'n' then
      precision := Prompt_for_Precision;
      case precision is
        when '0' => Standard_User_Test;
        when '1' => DoblDobl_User_Test;
        when '2' => QuadDobl_User_Test;
        when others => null;
      end case;
    else
      put("Give the dimension : "); get(dim);
      put("Give the degree of the power series : "); get(deg);
      put("Give the number of terms in each circuit : "); get(nbr);
      put("Give the largest power of the variables : "); get(pwr);
      new_line;
      put("Benchmark for all precisions ? (y/n) "); Ask_Yes_or_No(ans);
      if ans = 'y' then
        Benchmark(dim,deg,nbr,pwr);
      else
        precision := Prompt_for_Precision;
        case precision is
          when '0' => Standard_Random_Test(dim,deg,nbr,pwr);
          when '1' => DoblDobl_Random_Test(dim,deg,nbr,pwr);
          when '2' => QuadDobl_Random_Test(dim,deg,nbr,pwr);
          when others => null;
        end case;
      end if;
    end if;
  end Main;

end Test_mtHessian_Convolutions;