libadalang_24.0.0_a1358075/src/libadalang-data_decomposition.adb

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
--
--  Copyright (C) 2022-2023, AdaCore
--  SPDX-License-Identifier: Apache-2.0
--

with Ada.Containers.Hashed_Sets;
with Ada.Containers.Vectors;
with Ada.Exceptions; use Ada.Exceptions;
with Ada.IO_Exceptions;
with Ada.Text_IO;    use Ada.Text_IO;

with GNATCOLL.JSON; use GNATCOLL.JSON;
with GNATCOLL.Mmap;
with GNATCOLL.OS.FS;
with GNATCOLL.OS.Process;
with GNATCOLL.VFS;
with GPR2.Containers;
with GPR2.Context;
with GPR2.Path_Name;
with GPR2.Path_Name.Set;

with Libadalang.Auto_Provider; use Libadalang.Auto_Provider;
with Libadalang.Common;        use Libadalang.Common;
with Libadalang.GPR_Utils;     use Libadalang.GPR_Utils;

package body Libadalang.Data_Decomposition is

   Zero      : constant GMP_Int.Big_Integer := GMP_Int.Make ("0");
   One       : constant GMP_Int.Big_Integer := GMP_Int.Make ("1");
   Size_Last : constant GMP_Int.Big_Integer :=
     GMP_Int.Make (Size_Type'Last'Image);

   function Type_Kind_For (Decl : Base_Type_Decl'Class) return Type_Kind;
   --  Return the type kind for the given type declaration parse tree. Raise a
   --  ``Type_Mimatch_Error`` exception if it is not possible to determine this
   --  type kind.

   function Wrap
     (Self       : Numerical_Expression_Access;
      Collection : Repinfo_Collection)
      return Numerical_Expression;
   function Wrap
     (Self        : Type_Representation_Access;
      Declaration : Base_Type_Decl'Class;
      Collection  : Repinfo_Collection)
      return Type_Representation;
   function Wrap
     (Self        : Variant_Representation_Access;
      Declaration : Variant;
      Collection  : Repinfo_Collection)
      return Variant_Representation;
   function Wrap
     (Self        : Component_Representation_Access;
      Declaration : Defining_Name;
      Collection  : Repinfo_Collection)
      return Component_Representation;
   --  Converter between internal objects and public ones

   package Defining_Name_Vectors is new Ada.Containers.Vectors
     (Positive, Defining_Name);

   procedure Iterate_Derivations
     (Collection : Repinfo_Collection;
      Decl       : Base_Type_Decl'Class;
      Repr       : Type_Representation_Access;
      Process    : access procedure (Decl : Concrete_Type_Decl;
                                     Def  : Type_Def;
                                     Repr : Type_Representation_Access));
   --  Assuming that ``Self`` is a record type declaration and ``Repr`` the
   --  corresponding representation data, call ``Process`` on all types whose
   --  derivations yield to ``Self`` plus their corresponding representation
   --  data.

   function Get_Component_List (Def : Type_Def) return Component_List;
   --  Assuming that ``Self`` is a record type declaration, return its root
   --  component list (i.e. ignoring component lists for parents and variant
   --  parts).

   type Component_Association is record
      Decl : Defining_Name;
      Repr : Component_Representation_Access;
   end record;

   package Component_Association_Vectors is new Ada.Containers.Vectors
     (Positive, Component_Association);

   function Component_Associations
     (Collection : Repinfo_Collection;
      Decl       : Base_Type_Decl'Class;
      Repr       : Type_Representation_Access)
      return Component_Association_Vectors.Vector;
   --  Append to ``Decls`` all components from ``Self``, including
   --  discriminants, components defined in parent types, but excluding
   --  components from variant parts.

   ----------------------
   -- Extract_Variants --
   ----------------------

   function Extract_Variants
     (Collection : Repinfo_Collection;
      Decl       : Ada_Node'Class;
      Variants   : Variant_Representation_Access_Array;
      Part_Node  : Variant_Part) return Variant_Representation_Array;
   --  Return the array of ``Variant_Representation`` corresponding to
   --  ``Variants`` and ``Part_Node``. Raise a ``Type_Mismatch_Error`` if an
   --  inconstency is detected between the two: ``Part_Node`` being null or not
   --  having the right number of variants.
   --
   --  ``Collection`` is used to wrap variant representations, ``Decl`` is used
   --  for error message formatting

   function Load_JSON (Filename : String) return JSON_Value;
   --  Open ``Filename`` in read mode, parse its content and return the
   --  corresponding JSON document. Raise a ``Loading_Error`` exception in case
   --  of error.

   function Symbolize
     (Self : in out Repinfo_Collection_Data; Name : String) return Symbol_Type;
   function Symbolize
     (Self : in out Repinfo_Collection_Data;
      Name : Text_Type) return Symbol_Type;
   --  Turn the given name into a symbol for ``Self``

   function Load_Type
     (Self   : in out Repinfo_Collection_Data;
      Entity : JSON_Value;
      Name   : String) return Type_Representation_Access;
   --  Import the type representation corresponding to the description in
   --  ``Entity`` into ``Self``. Return null if this is not an entity we can
   --  handle.

   function Load_Components
     (Self       : in out Repinfo_Collection_Data;
      Components : JSON_Value;
      Context    : String) return Component_Representation_Access_Array_Access;
   --  Import the component representations from ``Components`` into ``Self``.
   --
   --  ``Context`` must be a human-readable description of the contanining
   --  entity being loaded, for error reporting purposes.

   function Load_Variants
     (Self     : in out Repinfo_Collection_Data;
      Variants : JSON_Value;
      Context  : String) return Variant_Representation_Access_Array_Access;
   --  Import the variant representations from ``Variants`` into ``Self``.
   --
   --  ``Context`` must be a human-readable description of the contanining
   --  entity being loaded, for error reporting purposes.

   function Load_Numerical_Expression
     (Self       : in out Repinfo_Collection_Data;
      Expression : JSON_Value;
      Context    : String) return Numerical_Expression_Access;
   --  Import the numerical expression that ``Expression`` denotes into
   --  ``Self``.  Return null if this expression cannot be evaluated.
   --
   --  ``Context`` must be a human-readable description of the expression being
   --  loaded, for error reporting purposes.

   function Load_Rational
     (Self       : in out Repinfo_Collection_Data;
      Expression : JSON_Value;
      Context    : String) return Rational_Access;
   --  Import the rational number that ``Expression`` denotes into ``Self``.
   --
   --  ``Context`` must be a human-readable description of the expression being
   --  loaded, for error reporting purposes.

   ----------------
   -- Allocators --
   ----------------

   function Allocate_Integer
     (Self : in out Repinfo_Collection_Data) return Integer_Access;
   --  Allocate a big integer for ``Self``

   function Allocate_Rational
     (Self : in out Repinfo_Collection_Data) return Rational_Access;
   --  Allocate a rational number for ``Self``

   ---------------------
   -- Pool allocators --
   ---------------------

   subtype Record_Type_Subtype is Type_Representation_Data (Record_Type);
   type Record_Type_Access is access all Record_Type_Subtype;
   pragma No_Strict_Aliasing (Record_Type_Access);
   package Record_Type_Allocator is new Alloc
     (Record_Type_Subtype, Record_Type_Access);
   function Allocate_Record_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access;

   subtype Array_Type_Subtype is Type_Representation_Data (Array_Type);
   type Array_Type_Access is access all Array_Type_Subtype;
   pragma No_Strict_Aliasing (Array_Type_Access);
   package Array_Type_Allocator is new Alloc
     (Array_Type_Subtype, Array_Type_Access);
   function Allocate_Array_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access;

   subtype Fixed_Type_Subtype is
     Type_Representation_Data (Internal_Fixed_Type);
   type Fixed_Type_Access is access all Fixed_Type_Subtype;
   pragma No_Strict_Aliasing (Fixed_Type_Access);
   package Fixed_Type_Allocator is new Alloc
     (Fixed_Type_Subtype, Fixed_Type_Access);
   function Allocate_Fixed_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access;

   subtype Other_Type_Subtype is Type_Representation_Data (Other_Type);
   type Other_Type_Access is access all Other_Type_Subtype;
   pragma No_Strict_Aliasing (Other_Type_Access);
   package Other_Type_Allocator is new Alloc
     (Other_Type_Subtype, Other_Type_Access);
   function Allocate_Other_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access;

   package Numerical_Expression_Allocator is new Alloc
     (Numerical_Expression_Data, Numerical_Expression_Access);
   function Allocate_Numerical_Expression
     (Pool : Bump_Ptr_Pool) return Numerical_Expression_Access
   renames Numerical_Expression_Allocator.Alloc;

   type Expr_Node_Wrapper is record
      Data : aliased Expr_Node_Data;
   end record;
   type Expr_Node_Wrapper_Access is access all Expr_Node_Wrapper;
   pragma No_Strict_Aliasing (Expr_Node_Wrapper_Access);
   package Expr_Node_Allocator is new Alloc
     (Expr_Node_Wrapper, Expr_Node_Wrapper_Access);
   function Allocate_Expr_Node (Pool : Bump_Ptr_Pool) return Expr_Node_Access;

   package Variant_Representation_Allocator is new Alloc
     (Variant_Representation_Data, Variant_Representation_Access);
   function Allocate_Variant_Representation
     (Pool : Bump_Ptr_Pool) return Variant_Representation_Access
   renames Variant_Representation_Allocator.Alloc;

   package Component_Representation_Allocator is new Alloc
     (Component_Representation_Data, Component_Representation_Access);
   function Allocate_Component_Representation
     (Pool : Bump_Ptr_Pool) return Component_Representation_Access
   renames Component_Representation_Allocator.Alloc;

   -----------------------------
   -- Constants for JSON keys --
   -----------------------------

   Key_Alignment   : constant String := "Alignment";
   Key_Object_Size : constant String := "Object_Size";
   Key_Size        : constant String := "Size";
   Key_Value_Size  : constant String := "Value_Size";

   -------------------
   -- Type_Kind_For --
   -------------------

   function Type_Kind_For (Decl : Base_Type_Decl'Class) return Type_Kind is
      Full : Base_Type_Decl := Decl.P_Full_View;
      Def  : Type_Def := No_Type_Def;
   begin
      --  Loop in order to traverse derived types until we can find the type
      --  kind.

      Def_Loop : loop
         if Full.Is_Null then
            raise Type_Mismatch_Error with
              "cannot find full view for " & Decl.Image;
         end if;

         --  First analyze the "type decl" layer

         Full_Loop : loop
            case Ada_Base_Type_Decl (Full.Kind) is
               when Ada_Type_Decl =>
                  Def := Full.As_Type_Decl.F_Type_Def;
                  if Full.Is_Null then
                     raise Type_Mismatch_Error with
                       "incomplete parse tree for " & Full.Image;
                  end if;
                  exit Full_Loop;

               when Ada_Subtype_Decl =>
                  Full :=
                    (Full.As_Subtype_Decl
                     .F_Subtype
                     .P_Designated_Type_Decl
                     .P_Full_View);

               when Ada_Task_Type_Decl_Range =>
                  return Task_Type;

               when Ada_Protected_Type_Decl =>
                  return Protected_Type;

               when Ada_Incomplete_Type_Decl_Range =>
                  raise Type_Mismatch_Error with
                    "cannot find full view for " & Full.Image;

               when Ada_Discrete_Base_Subtype_Decl
                  | Ada_Classwide_Type_Decl =>
                  Full := Full.Parent.As_Base_Type_Decl.P_Full_View;
            end case;
         end loop Full_Loop;

         --  Then analyze the "type def" layer, if any

         case Ada_Type_Def (Def.Kind) is
            when Ada_Access_Def               => return Access_Type;
            when Ada_Enum_Type_Def            => return Enumeration_Type;
            when Ada_Signed_Int_Type_Def      => return Signed_Type;
            when Ada_Mod_Int_Type_Def         => return Modular_Type;
            when Ada_Floating_Point_Def       => return Floating_Type;
            when Ada_Decimal_Fixed_Point_Def  => return Decimal_Type;
            when Ada_Ordinary_Fixed_Point_Def => return Ordinary_Type;
            when Ada_Array_Type_Def           => return Array_Type;
            when Ada_Interface_Type_Def       => return Interface_Type;
            when Ada_Record_Type_Def          => return Record_Type;

            when Ada_Private_Type_Def =>
               raise Type_Mismatch_Error with
                 "cannot find full view for " & Full.Image;

            when Ada_Formal_Discrete_Type_Def =>
               raise Type_Mismatch_Error with
                 "cannot resolve type in uninstantiated generic " & Full.Image;

            when Ada_Derived_Type_Def =>
               Full :=
                 (Def.As_Derived_Type_Def
                  .F_Subtype_Indication
                  .P_Designated_Type_Decl
                  .P_Full_View);
         end case;
      end loop Def_Loop;
   end Type_Kind_For;

   ----------
   -- Wrap --
   ----------

   function Wrap
     (Self       : Numerical_Expression_Access;
      Collection : Repinfo_Collection)
      return Numerical_Expression is
   begin
      if Self = null then
         return (raise Unsupported_Expression);
      else
         return (Collection, Self);
      end if;
   end Wrap;

   ----------
   -- Wrap --
   ----------

   function Wrap
     (Self        : Type_Representation_Access;
      Declaration : Base_Type_Decl'Class;
      Collection  : Repinfo_Collection)
      return Type_Representation
   is
      Variant_Part_Node : Variant_Part := No_Variant_Part;
      Variants          : Variant_Representation_Access_Array_Access;

      procedure Process
        (Decl : Concrete_Type_Decl;
         Def  : Type_Def;
         Repr : Type_Representation_Access);
      --  Ensure that ``Decl``/``Def`` and ``Repr`` are consistent regarding
      --  variant parts (either both have one, either one have it). Update the
      --  ``Variant_Part_Node`` and ``Variants`` local variables above
      --  accordingly. Since it is illegal in Ada for a record extension chain
      --  to have more than one variant part, also check that we do not exceed
      --  this here.

      -------------
      -- Process --
      -------------

      procedure Process
        (Decl : Concrete_Type_Decl;
         Def  : Type_Def;
         Repr : Type_Representation_Access)
      is
         VP : constant Variant_Part := Get_Component_List (Def).F_Variant_Part;
      begin
         --  Make sure that the presence of a variant part in ``Decl``/``Def``
         --  is consistent with ``Repr``.

         if VP.Is_Null then
            if Repr.Variants /= null then
               raise Type_Mismatch_Error with
                 Decl.Image & " has no variant, repinfo inconsistent";
            end if;

         else
            if Repr.Variants = null then
               raise Type_Mismatch_Error with
                 Decl.Image & " has a variant, repinfo inconsistent";

            --  Also make sure we have a single variant part in the whole
            --  extension chain.

            elsif not Variant_Part_Node.Is_Null then
               raise Type_Mismatch_Error with
                 VP.Image & " conflicts with " & Variant_Part_Node.Image;
            end if;

            Variant_Part_Node := VP;
            Variants := Repr.Variants;
         end if;
      end Process;

      Kind : Type_Kind;

   begin
      if Self = null then
         return No_Type_Representation;
      else
         if Self.Kind = Record_Type then
            Iterate_Derivations
              (Collection, Declaration, Self, Process'Access);
         end if;

         Kind := Type_Kind_For (Declaration);
         if (case Kind is
             when Record_Type => Self.Kind /= Record_Type,
             when Array_Type  => Self.Kind /= Array_Type,
             when Fixed_Type => Self.Kind /= Internal_Fixed_Type,
             when others => Self.Kind /= Other_Type)
         then
            raise Type_Mismatch_Error with
              Declaration.Image & " has unexpected type kind " & Kind'Image;
         end if;

         return (Collection,
                 Self,
                 Declaration.As_Base_Type_Decl,
                 Kind,
                 Variant_Part_Node,
                 Variants);
      end if;
   end Wrap;

   ----------
   -- Wrap --
   ----------

   function Wrap
     (Self        : Variant_Representation_Access;
      Declaration : Variant;
      Collection  : Repinfo_Collection)
      return Variant_Representation is
   begin
      if Self = null then
         return No_Variant_Representation;
      else
         return (Collection, Self, Declaration);
      end if;
   end Wrap;

   ----------
   -- Wrap --
   ----------

   function Wrap
     (Self        : Component_Representation_Access;
      Declaration : Defining_Name;
      Collection  : Repinfo_Collection)
      return Component_Representation is
   begin
      if Self = null then
         return No_Component_Representation;
      else
         return (Collection, Self, Declaration);
      end if;
   end Wrap;

   -------------------------
   -- Iterate_Derivations --
   -------------------------

   procedure Iterate_Derivations
     (Collection : Repinfo_Collection;
      Decl       : Base_Type_Decl'Class;
      Repr       : Type_Representation_Access;
      Process    : access procedure (Decl : Concrete_Type_Decl;
                                     Def  : Type_Def;
                                     Repr : Type_Representation_Access))
   is
      --  Get the full view for ``Self`` and ensure it is a record type, as
      --  well as the type that ``Repr`` describes.

      CTD : constant Concrete_Type_Decl :=
        Decl.P_Full_View.As_Concrete_Type_Decl;
      Def : constant Type_Def := CTD.F_Type_Def;
   begin
      if not CTD.P_Is_Record_Type then
         raise Type_Mismatch_Error with
           "record type expected, got " & CTD.Image;
      elsif Repr.Kind /= Record_Type then
         raise Type_Mismatch_Error with
           "record type repinfo expected, got " & Repr.Kind'Image;
      end if;

      --  If this is a derived type, first iterate on the type that is derived
      --  (the base type).

      if Def.Kind = Ada_Derived_Type_Def then
         declare
            --  Start resolving the base type

            Base_Decl_Ref : constant Subtype_Indication :=
              Def.As_Derived_Type_Def.F_Subtype_Indication;
            Base_Decl     : constant Base_Type_Decl :=
              Base_Decl_Ref.P_Designated_Type_Decl;
            Base_Repr     : Type_Representation;
         begin
            if Base_Decl.Is_Null then
               raise Type_Mismatch_Error with
                 "cannot resolve " & Base_Decl_Ref.Image;
            end if;

            --  Then look for its type representation information

            Base_Repr := Collection.Lookup (Base_Decl);
            if Is_Null (Base_Repr) then
               raise Type_Mismatch_Error with
                 "cannot find repinfo for " & Base_Decl.Image;
            end if;

            --  Continue the recursion on that base type

            Iterate_Derivations
              (Collection => Collection,
               Decl       => Base_Decl,
               Repr       => Base_Repr.Data,
               Process    => Process);
         end;
      end if;

      Process.all (CTD, Def, Repr);
   end Iterate_Derivations;

   ------------------------
   -- Get_Component_List --
   ------------------------

   function Get_Component_List (Def : Type_Def) return Component_List is
   begin
      return
        (case Def.Kind is
         when Ada_Record_Type_Def =>
            Def.As_Record_Type_Def.F_Record_Def.F_Components,
         when Ada_Derived_Type_Def =>
            Def.As_Derived_Type_Def.F_Record_Extension.F_Components,
         when others =>
            raise Program_Error);
   end Get_Component_List;

   ----------------------------
   -- Component_Associations --
   ----------------------------

   function Component_Associations
     (Collection : Repinfo_Collection;
      Decl       : Base_Type_Decl'Class;
      Repr       : Type_Representation_Access)
      return Component_Association_Vectors.Vector
   is
      Coll  : Repinfo_Collection_Data renames
        Collection.Unchecked_Get.all;

      Result : Component_Association_Vectors.Vector;

      package Symbol_Sets is new Ada.Containers.Hashed_Sets
        (Element_Type        => Symbol_Type,
         Hash                => Hash,
         Equivalent_Elements => "=");
      Artificial_Components : Symbol_Sets.Set;
      --  Set of component names for artificial components that were included
      --  in ``Result``. Unlike components that come from sources, which can be
      --  de-duplicated using the correspendance between parse trees and
      --  repinfo, artificial components are present only in repinfo: we need
      --  this set to de-duplicate them based on their names.

      function Register_Artificial
        (Repr : Component_Representation_Access) return Boolean;
      --  If ``Repr`` designates an artificial component and this is the first
      --  one we inspect with such a name, append it to ``Result``. Do nothing
      --  in all other cases.

      procedure Process
        (Decl : Concrete_Type_Decl;
         Def  : Type_Def;
         Repr : Type_Representation_Access);
      --  Process a record type declaration

      -------------------------
      -- Register_Artificial --
      -------------------------

      function Register_Artificial
        (Repr : Component_Representation_Access) return Boolean
      is
         use Symbol_Sets;
         Position : Cursor;
         Inserted : Boolean;

         --  If ``Repr`` does not designate an artificial component, do not
         --  register it.

         Name : Text_Type renames Repr.Name.all;
      begin
         if Name /= "" and then Name (Name'First) /= '_' then
            return False;
         end if;

         --  Otherwise try to register it. If there is already a component with
         --  the same name, just return False. Otherwise, register/append it
         --  and return True.

         Artificial_Components.Insert (Repr.Name, Position, Inserted);
         if Inserted then
            Result.Append ((No_Defining_Name, Repr));
         end if;
         return Inserted;
      end Register_Artificial;

      -------------
      -- Process --
      -------------

      procedure Process
        (Decl : Concrete_Type_Decl;
         Def  : Type_Def;
         Repr : Type_Representation_Access)
      is
         Comps : Component_Representation_Access_Array renames
           Repr.Components.all;

         --  Go through all discriminants/components in ``Decl`` and in
         --  ``Repr`` in parallel: their components are supposed to appear in
         --  the same order.
         --
         --  The lists in ``Decl`` are considered to be the reference (they are
         --  assumed correct) whereas the list in ``Repr`` is considered
         --  unreliably (the compiler mechanisms to produce has a very subtle
         --  behavior, and component lists may vary/be incorrect).
         --
         --  Try to find information for all components in ``Decl``, but
         --  discard entries in ``Repr`` that have no corresponding declaration
         --  *and* that are not artificial (artificial components have no
         --  declaration).

         Repr_Index : Positive := 1;
         --  Index of the next component in ``Repr`` to process

         function Next_Component_Repr
           (For_Comp : Defining_Name) return Component_Representation_Access;
         --  Return the next component representation (in ``Comps``) to process
         --  and increment ``Repr_Index``, or raise a ``Type_Mismatch_Error``
         --  exception if there is no component left.

         procedure Append (Decl : Base_Formal_Param_Decl);
         --  Append entries to ``Result`` for all defining names in ``Decl``

         -------------------------
         -- Next_Component_Repr --
         -------------------------

         function Next_Component_Repr
           (For_Comp : Defining_Name) return Component_Representation_Access is
         begin
            if Repr_Index > Comps'Last then
               raise Type_Mismatch_Error with
                 "cannot find repinfo for " & For_Comp.Image;
            end if;
            return Result : constant Component_Representation_Access :=
              Comps (Repr_Index)
            do
               Repr_Index := Repr_Index + 1;
            end return;
         end Next_Component_Repr;

         ------------
         -- Append --
         ------------

         procedure Append (Decl : Base_Formal_Param_Decl) is
         begin
            --  For each defining name in ``Decl``, look for a corresponding
            --  component representation info.

            Defining_Names : for DN of Decl.P_Defining_Names loop
               Search : loop
                  declare
                     Repr : constant Component_Representation_Access :=
                       Next_Component_Repr (DN);
                  begin
                     --  If ``Repr`` corresponds to an artificial component,
                     --  try to append it to ``Result`` and resume the search
                     --  for a repinfo for ``DN``.

                     if Register_Artificial (Repr) then
                        null;

                     --  Otherwise, skip entries until we find a match for
                     --  ``DN``.

                     elsif Symbolize (Coll, DN.Text) = Repr.Name then
                        Result.Append ((DN, Repr));
                        exit Search;
                     end if;
                  end;
               end loop Search;
            end loop Defining_Names;
         end Append;

         --  Collect discriminants, if any. Note that when there are
         --  discriminants, the full view should always have a list of known
         --  discriminants.

         DP : constant Discriminant_Part := Decl.F_Discriminants;

      begin
         if not DP.Is_Null then
            for D of DP.As_Known_Discriminant_Part.F_Discr_Specs loop
               Append (D.As_Base_Formal_Param_Decl);
            end loop;
         end if;

         --  Now collect regular components defined in ``Def`` itself

         for Comp of Get_Component_List (Def).F_Components loop
            if Comp.Kind = Ada_Component_Decl then
               Append (Comp.As_Base_Formal_Param_Decl);
            end if;
         end loop;

         --  Consume all remaining component repinfo, just in case they contain
         --  an artificial component that we have not registered yet.

         while Repr_Index in Repr.Components'Range loop
            declare
               Repr : constant Component_Representation_Access :=
                 Next_Component_Repr (No_Defining_Name);
               Dummy : constant Boolean := Register_Artificial (Repr);
            begin
               null;
            end;
         end loop;
      end Process;

   begin
      Iterate_Derivations (Collection, Decl, Repr, Process'Access);
      return Result;
   end Component_Associations;

   ----------------------
   -- Extract_Variants --
   ----------------------

   function Extract_Variants
     (Collection : Repinfo_Collection;
      Decl       : Ada_Node'Class;
      Variants   : Variant_Representation_Access_Array;
      Part_Node  : Variant_Part) return Variant_Representation_Array
   is
      List_Node : Variant_List;
   begin
      --  Make sure that the record type has a variant part, and that it has
      --  the correct number of variants.

      if Part_Node.Is_Null then
         raise Type_Mismatch_Error with
           "cannot find variant part in " & Decl.Image;
      end if;

      List_Node := Part_Node.F_Variant;
      if List_Node.Children_Count /= Variants'Length then
         raise Type_Mismatch_Error with
            Decl.Image & " has" & List_Node.Children_Count'Image
            & " variants, but" & Variants'Length'Image & " expected";
      end if;

      return Result : Variant_Representation_Array (Variants'Range) do
         for I in Result'Range loop
            Result (I) := Wrap
              (Self        => Variants (I),
               Declaration => List_Node.Child (I).As_Variant,
               Collection  => Collection);
         end loop;
      end return;
   end Extract_Variants;

   ---------------
   -- Load_JSON --
   ---------------

   function Load_JSON (Filename : String) return JSON_Value is
      use GNATCOLL.Mmap;

      File    : Mapped_File;
      Region  : Mapped_Region;
      Content : Short.Str_Access;
      Result  : Read_Result;
   begin
      --  Read the content of the file to parse through memory-mapping

      begin
         File := Open_Read (Filename);
      exception
         when Exc : Ada.IO_Exceptions.Name_Error =>
            raise Loading_Error with Exception_Message (Exc);
      end;
      Region := Read (File => File, Length => Length (File));
      Content := Short.Data (Region);

      --  Run the JSON parser, bail out on error

      Result := Read (Content.all (1 .. Short.Last (Region)));
      Free (Region);
      Close (File);
      if not Result.Success then
         raise Loading_Error with
           Filename & ": " & Format_Parsing_Error (Result.Error);
      end if;

      return Result.Value;
   end Load_JSON;

   ---------------
   -- Symbolize --
   ---------------

   function Symbolize
     (Self : in out Repinfo_Collection_Data; Name : String) return Symbol_Type
   is
   begin
      --  TODO??? This assumes that names are plain ASCII, since the encoding
      --  in JSON files created by -gnatRj seems to be arbitrary. We might have
      --  to fix this one day.

      return Symbolize (Self, To_Text (Name));
   end Symbolize;

   ---------------
   -- Symbolize --
   ---------------

   function Symbolize
     (Self : in out Repinfo_Collection_Data;
      Name : Text_Type) return Symbol_Type is
   begin
      return Find (Self.Symbols, To_Lower (Name));
   end Symbolize;

   ---------------
   -- Load_Type --
   ---------------

   function Load_Type
     (Self   : in out Repinfo_Collection_Data;
      Entity : JSON_Value;
      Name   : String) return Type_Representation_Access
   is
      function Load_Bit_Order (Field : String) return System.Bit_Order;
      --  Load a bit order attribute (``Field``) from ``Entity``

      --------------------
      -- Load_Bit_Order --
      --------------------

      function Load_Bit_Order (Field : String) return System.Bit_Order is
      begin
         if Entity.Has_Field (Field)
            and then Entity.Get (Field).Kind = JSON_String_Type
         then
            declare
               Value : constant String := Entity.Get (Field);
            begin
               if Value = "System.Low_Order_First" then
                  return System.Low_Order_First;
               elsif Value = "System.High_Order_First" then
                  return System.High_Order_First;
               end if;
            end;
         end if;

         return (raise Loading_Error with
                 Name & "/" & Field & ": invalid bit order");
      end Load_Bit_Order;

      Alignment               : Natural;
      Object_Size, Value_Size : Numerical_Expression_Access;
   begin
      --  The kind of type that is loaded is inferred from the JSON fields
      --  present, hence the heuristics below.
      --
      --  First try to load common attributes. If Alignment is missing, this is
      --  probably not an entity we are interested in.

      if not Entity.Has_Field (Key_Alignment) then
         Trace.Trace
           ("Missing mandatory attribute ("
            & Key_Alignment & "): skipping type");
         return null;
      elsif Entity.Get (Key_Alignment).Kind /= JSON_Int_Type then
         raise Loading_Error with Name & ": invalid alignment";
      end if;
      Alignment := Entity.Get (Key_Alignment);

      --  All types provide either:
      --
      --  * the Size attribute, when the Object_Size=Value_Size;
      --  * the couple Object_Size/Value_Size, when they are different;
      --  * none, when the size is unknown (for instance unconstrained array
      --    types).

      if Entity.Has_Field ("Size") then
         Object_Size := Load_Numerical_Expression
           (Self, Entity.Get (Key_Size), Name & "/" & Key_Size);
         Value_Size := Object_Size;
      elsif Entity.Has_Field ("Object_Size") then
         Object_Size := Load_Numerical_Expression
           (Self,
            Entity.Get (Key_Object_Size),
            Name & "/" & Key_Object_Size);
         Value_Size := Load_Numerical_Expression
           (Self,
            Entity.Get (Key_Value_Size),
            Name & "/" & Key_Value_Size);
      end if;

      --  Now infer the type of entity

      if Entity.Has_Field ("record") then

         --  This looks like a record type

         return Result : constant Type_Representation_Access :=
           Allocate_Record_Type (Self.Pool)
         do
            Result.Alignment := Alignment;
            Result.Object_Size := Object_Size;
            Result.Value_Size := Value_Size;
            Result.Scalar_Storage_Order :=
              Load_Bit_Order ("Scalar_Storage_Order");
            Result.Components :=
              Load_Components (Self, Entity.Get ("record"), Name);
            Result.Variants :=
              (if Entity.Has_Field ("variant")
               then Load_Variants
                      (Self, Entity.Get ("variant"), Name & "/variant")
               else null);
            Result.Bit_Order := Load_Bit_Order ("Bit_Order");

            Result.Discriminant_Count := 0;
            for C of Result.Components.all loop
               if C.Discriminant_Number > 0 then
                  Result.Discriminant_Count := Result.Discriminant_Count + 1;
               end if;
            end loop;
         end return;

      elsif Entity.Has_Field ("Component_Size") then

         --  This looks like an array type

         return Result : constant Type_Representation_Access :=
           Allocate_Array_Type (Self.Pool)
         do
            Result.Alignment := Alignment;
            Result.Object_Size := Object_Size;
            Result.Value_Size := Value_Size;
            Result.Scalar_Storage_Order :=
              Load_Bit_Order ("Scalar_Storage_Order");
            Result.Component_Size := Load_Numerical_Expression
              (Self, Entity.Get ("Component_Size"), Name & "/Component_Size");
         end return;

      elsif Entity.Has_Field ("Small") then

         --  This looks like a fixed point type

         return Result : constant Type_Representation_Access :=
           Allocate_Fixed_Type (Self.Pool)
         do
            Result.Alignment := Alignment;
            Result.Object_Size := Object_Size;
            Result.Value_Size := Value_Size;
            Result.Small :=
              Load_Rational (Self, Entity.Get ("Small"), Name & "/Small");

            if not Entity.Has_Field ("Range")
               or else Entity.Get ("Range").Kind /= JSON_Array_Type
               or else Length (JSON_Array'(Entity.Get ("Range"))) /= 2
            then
               raise Loading_Error with Name & ": invalid/missing Range";
            end if;
            declare
               Bounds_Object : constant JSON_Value := Entity.Get ("Range");
               Bounds        : constant JSON_Array := Bounds_Object.Get;
            begin
               Result.Range_First :=
                 Load_Rational (Self, Get (Bounds, 1), Name & "/Range_First");
               Result.Range_Last :=
                 Load_Rational (Self, Get (Bounds, 2), Name & "/Range_Last");
            end;
         end return;

      elsif Entity.Has_Field ("mechanism") then

         --  This entity describes a subprogram: we do not handle it

         return null;

      else
         --  Assume this entity describes a number type that is not a fixed
         --  point type.

         return Result : constant Type_Representation_Access :=
           Allocate_Other_Type (Self.Pool)
         do
            Result.Alignment := Alignment;
            Result.Object_Size := Object_Size;
            Result.Value_Size := Value_Size;
         end return;
      end if;
   end Load_Type;

   ---------------------
   -- Load_Components --
   ---------------------

   function Load_Components
     (Self       : in out Repinfo_Collection_Data;
      Components : JSON_Value;
      Context    : String) return Component_Representation_Access_Array_Access
   is
      package Component_Vectors is new Langkit_Support.Vectors
        (Component_Representation_Access);

      Result    : Component_Vectors.Vector;
      Comp_Repr : Component_Representation_Access;
   begin
      if Components.Kind /= JSON_Array_Type then
         raise Loading_Error with Context & ": invalid list of components";
      end if;

      for Comp of JSON_Array'(Components.Get) loop

         --  Try to get the name of this component

         if Comp.Kind /= JSON_Object_Type
            or else not Comp.Has_Field ("name")
            or else Comp.Get ("name").Kind /= JSON_String_Type
         then
            raise Loading_Error with Context & ": invalid component";
         end if;

         declare
            Name       : constant String := Comp.Get ("name");
            Key        : constant Symbol_Type := Symbolize (Self, Name);
            Subcontext : constant String := Context & "/" & Name;
         begin
            Comp_Repr := Allocate_Component_Representation (Self.Pool);
            Comp_Repr.Name := Key;

            --  Load mandatory fields

            if not Comp.Has_Field ("Position")
               or else not Comp.Has_Field ("First_Bit")
               or else Comp.Get ("First_Bit").Kind /= JSON_Int_Type
               or else not Comp.Has_Field ("Size")
            then
               raise Loading_Error with
                 Subcontext & ": missing/invalid attributes";
            end if;

            Comp_Repr.Position := Load_Numerical_Expression
              (Self, Comp.Get ("Position"), Subcontext & "/Position");
            Comp_Repr.First_Bit := Comp.Get ("First_Bit");
            Comp_Repr.Size := Load_Numerical_Expression
              (Self, Comp.Get ("Size"), Subcontext & "/Size");

            --  Import discriminant information

            if Comp.Has_Field ("discriminant") then
               if Comp.Get ("discriminant").Kind /= JSON_Int_Type then
                  raise Loading_Error with
                    Subcontext & ": invalid ""discriminant"" attribute";
               end if;
               Comp_Repr.Discriminant_Number := Comp.Get ("discriminant");

            else
               Comp_Repr.Discriminant_Number := 0;
            end if;

            Result.Append (Comp_Repr);
         end;
      end loop;

      --  Turn the ``Result`` vector into the array access we need to return,
      --  then free resources for it.

      return R : constant Component_Representation_Access_Array_Access :=
        new Component_Representation_Access_Array (1 .. Result.Last_Index)
      do
         Self.Component_Repinfo_Arrays.Append (R);
         for I in R.all'Range loop
            R.all (I) := Result.Get (I);
         end loop;
         Result.Destroy;
      end return;

   exception
      when others =>
         Result.Destroy;
         raise;
   end Load_Components;

   -------------------
   -- Load_Variants --
   -------------------

   function Load_Variants
     (Self     : in out Repinfo_Collection_Data;
      Variants : JSON_Value;
      Context  : String) return Variant_Representation_Access_Array_Access
   is
      package Variant_Vectors is new Langkit_Support.Vectors
        (Variant_Representation_Access);

      Result       : Variant_Vectors.Vector;
      Variant_Repr : Variant_Representation_Access;
   begin
      if Variants.Kind /= JSON_Array_Type then
         raise Loading_Error with Context & ": invalid list of variants";
      end if;

      for Variant of JSON_Array'(Variants.Get) loop

         --  All variants have a "present" expression and a "record" array

         if Variant.Kind /= JSON_Object_Type
            or else not Variant.Has_Field ("present")
            or else not Variant.Has_Field ("record")
         then
            raise Loading_Error with Context & ": invalid variant";
         end if;

         Variant_Repr := Allocate_Variant_Representation (Self.Pool);
         Variant_Repr.Present := Load_Numerical_Expression
           (Self, Variant.Get ("present"), Context & "/variant");
         Variant_Repr.Components :=
           Load_Components (Self, Variant.Get ("record"), Context & "/record");

         --  Load the sub-variant part, if present

         Variant_Repr.Subvariants :=
           (if Variant.Has_Field ("variant")
            then Load_Variants
                   (Self, Variant.Get ("variant"), Context & "/variant")
            else null);

         Result.Append (Variant_Repr);
      end loop;

      --  Turn the ``Result`` vector into the array access we need to return,
      --  then free resources for it.

      return R : constant Variant_Representation_Access_Array_Access :=
        new Variant_Representation_Access_Array (1 .. Result.Last_Index)
      do
         Self.Variant_Repinfo_Arrays.Append (R);
         for I in R.all'Range loop
            R.all (I) := Result.Get (I);
         end loop;
         Result.Destroy;
      end return;

   exception
      when others =>
         Result.Destroy;
         raise;
   end Load_Variants;

   -------------------------------
   -- Load_Numerical_Expression --
   -------------------------------

   function Load_Numerical_Expression
     (Self       : in out Repinfo_Collection_Data;
      Expression : JSON_Value;
      Context    : String) return Numerical_Expression_Access
   is
      Discriminant_Count : Natural := 0;
      --  Highest index for required discriminants

      procedure Error with No_Return;
      --  Raise a ``Loading_Error`` because the expression to load is invalid

      function Load_Expr (Subexpr : JSON_Value) return Expr_Node_Access;
      --  Convert the given numerical subexpression into our internal
      --  representation for it.

      -----------
      -- Error --
      -----------

      procedure Error is
      begin
         raise Loading_Error with Context & ": invalid expression";
      end Error;

      ---------------
      -- Load_Expr --
      ---------------

      function Load_Expr (Subexpr : JSON_Value) return Expr_Node_Access is
         Result_Access : constant Expr_Node_Access :=
           Allocate_Expr_Node (Self.Pool);
         Result        : Expr_Node_Data
         with Import, Address => Result_Access.all'Address;
      begin
         case Subexpr.Kind is
            when JSON_Int_Type =>
               declare
                  Value : constant Long_Long_Integer := Subexpr.Get;
               begin
                  Result :=
                    (Code => Literal, Value => Allocate_Integer (Self));

                  --  The largest value for Value (``Value'Last``) may be too
                  --  large to be passed as a scalar to any of the
                  --  ``GNATCOLL.GMP.Integers.Set`` overloads. Go through its
                  --  image to avoid range check failures.

                  Result.Value.Set (Value'Image);
               end;

            when JSON_Object_Type =>

               --  This subexpression is an operation: sanitize it and import
               --  it.

               if not Subexpr.Has_Field ("code")
                  or else Subexpr.Get ("code").Kind /= JSON_String_Type
                  or else not Subexpr.Has_Field ("operands")
                  or else Subexpr.Get ("operands").Kind /= JSON_Array_Type
               then
                  Error;
               end if;

               declare
                  Code : constant String := Subexpr.Get ("code");
                  Op   : Opcode_1;

                  JSON_Ops : constant JSON_Array := Subexpr.Get ("operands");
                  Operands : array (1 .. Length (JSON_Ops))
                             of Expr_Node_Access;
               begin
                  --  First, process special opcodes

                  if Code = "var" then

                     --  "Dynamic_Val" is a placeholder for "unsupported"

                     return null;

                  elsif Code = "#" then

                     --  This is the "get discriminant value" opcode. Decode it
                     --  fully and keep track of the highest discriminant
                     --  number.

                     if Length (JSON_Ops) /= 1
                        or else Get (JSON_Ops, 1).Kind /= JSON_Int_Type
                     then
                        Error;
                     end if;
                     Result :=
                       (Code                => Discrim_Val,
                        Discriminant_Number => Get (JSON_Ops, 1).Get);
                     Discriminant_Count := Natural'Max
                       (Discriminant_Count, Result.Discriminant_Number);
                     return Result_Access;
                  end if;

                  --  Decode all operands. If one of them is unsupported the
                  --  whole expression is unsupported.

                  for I in Operands'Range loop
                     Operands (I) := Load_Expr (Get (JSON_Ops, I));
                     if Operands (I) = null then
                        return null;
                     end if;
                  end loop;

                  if Code = "?<>" then
                     Op := Cond_Expr;
                  elsif Code = "+" then
                     Op := Plus_Expr;
                  elsif Code = "-" then
                     Op := (if Operands'Length = 1
                            then Negate_Expr
                            else Minus_Expr);
                  elsif Code = "*" then
                     Op := Mult_Expr;
                  elsif Code = "/t" then
                     Op := Trunc_Div_Expr;
                  elsif Code = "/c" then
                     Op := Ceil_Div_Expr;
                  elsif Code = "/f" then
                     Op := Floor_Div_Expr;
                  elsif Code = "modt" then
                     Op := Trunc_Mod_Expr;
                  elsif Code = "modc" then
                     Op := Ceil_Mod_Expr;
                  elsif Code = "modf" then
                     Op := Floor_Mod_Expr;
                  elsif Code = "/e" then
                     Op := Exact_Div_Expr;
                  elsif Code = "min" then
                     Op := Min_Expr;
                  elsif Code = "max" then
                     Op := Max_Expr;
                  elsif Code = "abs" then
                     Op := Abs_Expr;
                  elsif Code = "and" then
                     Op := Truth_And_Expr;
                  elsif Code = "or" then
                     Op := Truth_Or_Expr;
                  elsif Code = "xor" then
                     Op := Truth_Xor_Expr;
                  elsif Code = "not" then
                     Op := Truth_Not_Expr;
                  elsif Code = "<" then
                     Op := Lt_Expr;
                  elsif Code = "<=" then
                     Op := Le_Expr;
                  elsif Code = ">" then
                     Op := Gt_Expr;
                  elsif Code = ">=" then
                     Op := Ge_Expr;
                  elsif Code = "==" then
                     Op := Eq_Expr;
                  elsif Code = "!=" then
                     Op := Ne_Expr;
                  elsif Code = "&" then
                     Op := Bit_And_Expr;
                  else
                     Error;
                  end if;

                  --  Finally, check that we have the correct number of
                  --  operands.

                  declare
                     Result_Template   : Expr_Node_Data (Op);
                     Expected_Op_Count : constant Positive :=
                       (if Op in Opcode_3 then 3
                        elsif Op in Opcode_2 then 2
                        else 1);
                  begin
                     if Operands'Length /= Expected_Op_Count then
                        Error;
                     end if;

                     Result_Template.Op_1 := Operands (1);
                     if Op in Opcode_2 then
                        Result_Template.Op_2 := Operands (2);
                        if Op in Opcode_3 then
                           Result_Template.Op_3 := Operands (3);
                        end if;
                     end if;

                     Result := Result_Template;
                  end;
               end;

            when JSON_String_Type =>
               if String'(Subexpr.Get) = "??" then
                  return null;
               else
                  Error;
               end if;

            when others =>
               Error;
         end case;

         return Result_Access;
      end Load_Expr;

      Root : constant Expr_Node_Access := Load_Expr (Expression);
   begin
      if Root = null then
         return null;
      end if;

      return Result : constant Numerical_Expression_Access :=
        Allocate_Numerical_Expression (Self.Pool)
      do
         Result.Discriminant_Count := Discriminant_Count;
         Result.Root := Root;
      end return;
   end Load_Numerical_Expression;

   -------------------
   -- Load_Rational --
   -------------------

   function Load_Rational
     (Self       : in out Repinfo_Collection_Data;
      Expression : JSON_Value;
      Context    : String) return Rational_Access
   is
      procedure Set (Result : in out GMP_RN.Rational; Value : JSON_Value);
      --  Set ``Result`` to the given JSON decimal value

      procedure Error with No_Return;
      --  Raise a ``Loading_Error`` because the expression to load is invalid

      ---------
      -- Set --
      ---------

      procedure Set (Result : in out GMP_RN.Rational; Value : JSON_Value) is
      begin
         Result.Set (GNATCOLL.GMP.Double (Value.Get_Long_Float));
      end Set;

      -----------
      -- Error --
      -----------

      procedure Error is
      begin
         raise Loading_Error with Context & ": invalid expression";
      end Error;

   begin
      --  Rational numbers are encoded in two forms..

      case Expression.Kind is
         when JSON_Float_Type =>

            --  A straight float number in the JSON

            return Result : constant Rational_Access :=
              Allocate_Rational (Self)
            do
               Set (Result.all, Expression);
            end return;

         when JSON_Object_Type =>

            --  A simple expression: {"cond": "/", operands: [X, Y]}

            if not Expression.Has_Field ("code")
               or else Expression.Get ("code").Kind /= JSON_String_Type
               or else String'(Expression.Get ("code")) /= "/"
               or else not Expression.Has_Field ("operands")
               or else Expression.Get ("operands").Kind /= JSON_Array_Type
            then
               Error;
            end if;

            declare
               Operands : constant JSON_Array := Expression.Get ("operands");
               Num, Den : GMP_RN.Rational;
            begin
               if Length (Operands) /= 2
                  or else Get (Operands, 1).Kind /= JSON_Float_Type
                  or else Get (Operands, 2).Kind /= JSON_Float_Type
               then
                  Error;
               end if;

               Set (Num, Get (Operands, 1));
               Set (Den, Get (Operands, 2));

               return Result : constant Rational_Access :=
                 Allocate_Rational (Self)
               do
                  Result.Set (GMP_RN."/" (Num, Den));
               end return;
            end;

         when others =>
            Error;
      end case;
   end Load_Rational;

   ----------------------
   -- Allocate_Integer --
   ----------------------

   function Allocate_Integer
     (Self : in out Repinfo_Collection_Data) return Integer_Access
   is
   begin
      return Result : constant Integer_Access := new GMP_Int.Big_Integer do
         Self.Integers.Append (Result);
      end return;
   end Allocate_Integer;

   -----------------------
   -- Allocate_Rational --
   -----------------------

   function Allocate_Rational
     (Self : in out Repinfo_Collection_Data) return Rational_Access is
   begin
      return Result : constant Rational_Access := new GMP_RN.Rational do
         Self.Rationals.Append (Result);
      end return;
   end Allocate_Rational;

   --------------------------
   -- Allocate_Record_Type --
   --------------------------

   function Allocate_Record_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access
   is
      Result : constant Record_Type_Access :=
        Record_Type_Allocator.Alloc (Pool);
      Kind   : Internal_Type_Kind with Import, Address => Result.Kind'Address;
   begin
      Kind := Record_Type;
      return Type_Representation_Access (Result);
   end Allocate_Record_Type;

   -------------------------
   -- Allocate_Array_Type --
   -------------------------

   function Allocate_Array_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access
   is
      Result : constant Array_Type_Access := Array_Type_Allocator.Alloc (Pool);
      Kind   : Internal_Type_Kind with Import, Address => Result.Kind'Address;
   begin
      Kind := Array_Type;
      return Type_Representation_Access (Result);
   end Allocate_Array_Type;

   -------------------------
   -- Allocate_Fixed_Type --
   -------------------------

   function Allocate_Fixed_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access
   is
      Result : constant Fixed_Type_Access := Fixed_Type_Allocator.Alloc (Pool);
      Kind   : Internal_Type_Kind with Import, Address => Result.Kind'Address;
   begin
      Kind := Internal_Fixed_Type;
      return Type_Representation_Access (Result);
   end Allocate_Fixed_Type;

   -------------------------
   -- Allocate_Other_Type --
   -------------------------

   function Allocate_Other_Type
     (Pool : Bump_Ptr_Pool) return Type_Representation_Access
   is
      Result : constant Other_Type_Access := Other_Type_Allocator.Alloc (Pool);
      Kind   : Internal_Type_Kind with Import, Address => Result.Kind'Address;
   begin
      Kind := Other_Type;
      return Type_Representation_Access (Result);
   end Allocate_Other_Type;

   ------------------------
   -- Allocate_Expr_Node --
   ------------------------

   function Allocate_Expr_Node (Pool : Bump_Ptr_Pool) return Expr_Node_Access
   is
      Wrapper : constant Expr_Node_Wrapper_Access :=
        Expr_Node_Allocator.Alloc (Pool);
   begin
      return Wrapper.Data'Access;
   end Allocate_Expr_Node;

   -------------
   -- Is_Null --
   -------------

   function Is_Null (Self : Numerical_Expression) return Boolean is
   begin
      return Self.Data = null;
   end Is_Null;

   -------------
   -- Is_Null --
   -------------

   function Is_Null (Self : Type_Representation) return Boolean is
   begin
      return Self.Data = null;
   end Is_Null;

   -------------
   -- Is_Null --
   -------------

   function Is_Null (Self : Component_Representation) return Boolean is
   begin
      return Self.Data = null;
   end Is_Null;

   -------------
   -- Is_Null --
   -------------

   function Is_Null (Self : Variant_Representation) return Boolean is
   begin
      return Self.Data = null;
   end Is_Null;

   ----------
   -- Kind --
   ----------

   function Kind (Self : Type_Representation) return Type_Kind is
   begin
      return Self.Kind;
   end Kind;

   ---------------
   -- Alignment --
   ---------------

   function Alignment (Self : Type_Representation) return Positive is
   begin
      return Self.Data.Alignment;
   end Alignment;

   --------------------------
   -- Scalar_Storage_Order --
   --------------------------

   function Scalar_Storage_Order
     (Self : Type_Representation) return System.Bit_Order is
   begin
      return Self.Data.Scalar_Storage_Order;
   end Scalar_Storage_Order;

   -----------------
   -- Object_Size --
   -----------------

   function Object_Size
     (Self : Type_Representation) return Numerical_Expression is
   begin
      return Wrap (Self.Data.Object_Size, Self.Collection);
   end Object_Size;

   ----------------
   -- Value_Size --
   ----------------

   function Value_Size
     (Self : Type_Representation) return Numerical_Expression
   is
   begin
      return Wrap (Self.Data.Value_Size, Self.Collection);
   end Value_Size;

   ----------------
   -- Components --
   ----------------

   function Components
     (Self : Type_Representation) return Component_Representation_Array
   is
      Assocs : constant Component_Association_Vectors.Vector :=
        Component_Associations (Self.Collection, Self.Declaration, Self.Data);
   begin
      return Result : Component_Representation_Array
                        (1 .. Natural (Assocs.Length))
      do
         for I in Result'Range loop
            declare
               A : Component_Association renames Assocs.Constant_Reference (I);
            begin
               Result (I) := Wrap (A.Repr, A.Decl, Self.Collection);
            end;
         end loop;
      end return;
   end Components;

   -------------------
   -- Discriminants --
   -------------------

   function Discriminants
     (Self : Type_Representation) return Component_Representation_Array
   is
      Comps : constant Component_Representation_Array := Components (Self);
      DN    : Natural;
   begin
      return Result : Component_Representation_Array
                        (1 .. Self.Data.Discriminant_Count)
      do
         for C of Comps loop
            DN := Discriminant_Number (C);
            if DN > 0 then
               Result (DN) := C;
            end if;
         end loop;
      end return;
   end Discriminants;

   ----------------------
   -- Has_Variant_Part --
   ----------------------

   function Has_Variant_Part (Self : Type_Representation) return Boolean is
   begin
      return Self.Variants /= null;
   end Has_Variant_Part;

   --------------
   -- Variants --
   --------------

   function Variants
     (Self : Type_Representation) return Variant_Representation_Array is
   begin
      return Extract_Variants
        (Collection => Self.Collection,
         Decl       => Self.Declaration,
         Variants   => Self.Variants.all,
         Part_Node  => Self.Variant_Part_Node);
   end Variants;

   ---------------
   -- Bit_Order --
   ---------------

   function Bit_Order (Self : Type_Representation) return System.Bit_Order is
   begin
      return Self.Data.Bit_Order;
   end Bit_Order;

   -------------
   -- Present --
   -------------

   function Present
     (Self : Variant_Representation) return Numerical_Expression is
   begin
      return Wrap (Self.Data.Present, Self.Collection);
   end Present;

   ----------------
   -- Components --
   ----------------

   function Components
     (Self : Variant_Representation) return Component_Representation_Array
   is
      Comps      : Component_Representation_Access_Array renames
        Self.Data.Components.all;
      Comp_Decls : Defining_Name_Vectors.Vector;
   begin
      --  Compute the list of defining names for all components in this
      --  variant. Raise an error if the count is not right.

      for Comp of Self.Declaration.F_Components.F_Components loop
         if Comp.Kind = Ada_Component_Decl then
            for DN of Comp.As_Component_Decl.P_Defining_Names loop
               Comp_Decls.Append (DN);
            end loop;
         end if;
      end loop;
      if Comps'Length /= Natural (Comp_Decls.Length) then
         raise Type_Mismatch_Error with
           Self.Declaration.Image & " has" & Comp_Decls.Length'Image
           & " components, but" & Comps'Length'Image & " expected";
      end if;

      return Result : Component_Representation_Array (Comps'Range) do
         for I in Result'Range loop
            Result (I) := Wrap
              (Self        => Comps (I),
               Declaration => Comp_Decls.Element (I),
               Collection  => Self.Collection);
         end loop;
      end return;
   end Components;

   --------------------
   -- Has_Subvariant --
   --------------------

   function Has_Subvariant_Part (Self : Variant_Representation) return Boolean
   is
   begin
      return Self.Data.Subvariants /= null;
   end Has_Subvariant_Part;

   -----------------
   -- Subvariants --
   -----------------

   function Subvariants
     (Self : Variant_Representation) return Variant_Representation_Array is
   begin
      return Extract_Variants
        (Collection => Self.Collection,
         Decl       => Self.Declaration,
         Variants   => Self.Data.Subvariants.all,
         Part_Node  => Self.Declaration.F_Components.F_Variant_Part);
   end Subvariants;

   -----------------
   -- Declaration --
   -----------------

   function Declaration
     (Self : Component_Representation) return Defining_Name is
   begin
      return Self.Declaration;
   end Declaration;

   --------------------
   -- Component_Name --
   --------------------

   function Component_Name (Self : Component_Representation) return Text_Type
   is
   begin
      return Self.Data.Name.all;
   end Component_Name;

   -------------------------
   -- Discriminant_Number --
   -------------------------

   function Discriminant_Number
     (Self : Component_Representation) return Natural is
   begin
      return Self.Data.Discriminant_Number;
   end Discriminant_Number;

   --------------
   -- Position --
   --------------

   function Position
     (Self : Component_Representation) return Numerical_Expression is
   begin
      return Wrap (Self.Data.Position, Self.Collection);
   end Position;

   ---------------
   -- First_Bit --
   ---------------

   function First_Bit (Self : Component_Representation) return Natural is
   begin
      return Self.Data.First_Bit;
   end First_Bit;

   ----------
   -- Size --
   ----------

   function Size (Self : Component_Representation) return Numerical_Expression
   is
   begin
      return Wrap (Self.Data.Size, Self.Collection);
   end Size;

   --------------------
   -- Component_Size --
   --------------------

   function Component_Size
     (Self : Type_Representation) return Numerical_Expression is
   begin
      return Wrap (Self.Data.Component_Size, Self.Collection);
   end Component_Size;

   -----------
   -- Small --
   -----------

   function Small (Self : Type_Representation) return GMP_RN.Rational is
   begin
      return Result : GMP_RN.Rational do
         Result.Set (Self.Data.Small.all);
      end return;
   end Small;

   -----------------
   -- Range_First --
   -----------------

   function Range_First (Self : Type_Representation) return GMP_RN.Rational is
   begin
      return Result : GMP_RN.Rational do
         Result.Set (Self.Data.Range_First.all);
      end return;
   end Range_First;

   ----------------
   -- Range_Last --
   ----------------

   function Range_Last (Self : Type_Representation) return GMP_RN.Rational is
   begin
      return Result : GMP_RN.Rational do
         Result.Set (Self.Data.Range_Last.all);
      end return;
   end Range_Last;

   ------------------------
   -- Discriminant_Count --
   ------------------------

   function Discriminant_Count (Self : Numerical_Expression) return Natural is
   begin
      return Self.Data.Discriminant_Count;
   end Discriminant_Count;

   ------------------------
   -- Discriminant_Value --
   ------------------------

   function Discriminant_Value
     (Result : Eval_Result) return GMP_Int.Big_Integer is
   begin
      case Result.Kind is
         when Enum_Lit =>
            return Result.Enum_Result.P_Enum_Rep;

         when Int =>
            return Value : GMP_Int.Big_Integer do
               Value.Set (Result.Int_Result);
            end return;

         when others =>
            raise Invalid_Discriminant;
      end case;
   end Discriminant_Value;

   ---------------
   -- Dump_Expr --
   ---------------

   procedure Dump_Expr (Node : Expr_Node_Access) is

      --  Operator associativity: higher priority number means higher
      --  associativity: we needs parens around an operand when its priority is
      --  lower than its embedding expression's.
      --
      --  * Cond_Expr: lowest priority (1)
      --  * Logic binary operators (and then, or else, xor): 2
      --  * Relational operators (<, <=, ...): 3
      --  * Addition, substraction: 4
      --  * Multiplications, divisions, remainders: 5
      --  * Bitwise operators (and, or): 6
      --  * Unary operators (not, abs, -), discriminants and literals: 7
      --
      --  Min and max have special treatment since they already contain parens:
      --  we never need extra parens to disambiguate.

      Priorities : constant array (Opcode) of Natural :=
        (Cond_Expr      => 1,

         Plus_Expr      => 4,
         Minus_Expr     => 4,

         Mult_Expr      => 5,
         Trunc_Div_Expr => 5,
         Ceil_Div_Expr  => 5,
         Floor_Div_Expr => 5,
         Trunc_Mod_Expr => 5,
         Ceil_Mod_Expr  => 5,
         Floor_Mod_Expr => 5,
         Exact_Div_Expr => 5,

         Min_Expr       => 0,
         Max_Expr       => 0,

         Truth_And_Expr => 1,
         Truth_Or_Expr  => 1,
         Truth_Xor_Expr => 1,

         Lt_Expr        => 3,
         Le_Expr        => 3,
         Gt_Expr        => 3,
         Ge_Expr        => 3,
         Eq_Expr        => 3,
         Ne_Expr        => 3,

         Bit_And_Expr   => 6,
         Negate_Expr    => 7,
         Abs_Expr       => 7,
         Truth_Not_Expr => 7,
         Discrim_Val    => 7,
         Literal        => 7);

      procedure Dump (Node : Expr_Node_Access; Outer_Priority : Natural);
      --  Dump the ``Node`` subexpression. ``Outer_Priority`` is the priority
      --  of the parent expression: it is used to determine if parens are
      --  needed around this subexpression.

      ----------
      -- Dump --
      ----------

      procedure Dump (Node : Expr_Node_Access; Outer_Priority : Natural) is
         Inner_Priority : constant Natural := Priorities (Node.Code);
         Parens_Needed : constant Boolean := Inner_Priority < Outer_Priority;

         procedure D
           (Node           : Expr_Node_Access;
            Outer_Priority : Natural := Inner_Priority);
         --  Shortcut for ``Dump (Node, Inner_Priority)``

         -------
         -- D --
         -------

         procedure D
           (Node           : Expr_Node_Access;
            Outer_Priority : Natural := Inner_Priority) is
         begin
            Dump (Node, Outer_Priority);
         end D;
      begin
         if Parens_Needed then
            Put ("(");
         end if;
         case Node.Code is
            when Cond_Expr =>
               --  To help readability, force the use of parens if operands are
               --  Cond_Expr themselves.

               Put ("if ");
               D (Node.Op_1, 2);
               Put (" then ");
               D (Node.Op_2, 2);
               Put (" else ");
               D (Node.Op_3);
            when Plus_Expr =>
               D (Node.Op_1);
               Put (" + ");
               D (Node.Op_2);
            when Minus_Expr =>
               D (Node.Op_1);
               Put (" - ");
               D (Node.Op_2);
            when Mult_Expr =>
               D (Node.Op_1);
               Put (" * ");
               D (Node.Op_2);
            when Trunc_Div_Expr =>
               D (Node.Op_1);
               Put (" /t ");
               D (Node.Op_2);
            when Ceil_Div_Expr =>
               D (Node.Op_1);
               Put (" /c ");
               D (Node.Op_2);
            when Floor_Div_Expr =>
               D (Node.Op_1);
               Put (" /f ");
               D (Node.Op_2);
            when Trunc_Mod_Expr =>
               D (Node.Op_1);
               Put (" modt ");
               D (Node.Op_2);
            when Ceil_Mod_Expr =>
               D (Node.Op_1);
               Put (" modc ");
               D (Node.Op_2);
            when Floor_Mod_Expr =>
               D (Node.Op_1);
               Put (" modf ");
               D (Node.Op_2);
            when Exact_Div_Expr =>
               D (Node.Op_1);
               Put (" /e ");
               D (Node.Op_2);
            when Min_Expr =>
               Put ("min(");
               D (Node.Op_1, 0);
               Put (", ");
               D (Node.Op_2, 0);
               Put (")");
            when Max_Expr =>
               Put ("max(");
               D (Node.Op_1);
               Put (", ");
               D (Node.Op_2);
               Put (")");
            when Truth_And_Expr =>
               D (Node.Op_1);
               Put (" and then ");
               D (Node.Op_2);
            when Truth_Or_Expr =>
               D (Node.Op_1);
               Put (" or else ");
               D (Node.Op_2);
            when Truth_Xor_Expr =>
               D (Node.Op_1);
               Put (" xor ");
               D (Node.Op_2);
            when Lt_Expr =>
               D (Node.Op_1);
               Put (" < ");
               D (Node.Op_2);
            when Le_Expr =>
               D (Node.Op_1);
               Put (" <= ");
               D (Node.Op_2);
            when Gt_Expr =>
               D (Node.Op_1);
               Put (" > ");
               D (Node.Op_2);
            when Ge_Expr =>
               D (Node.Op_1);
               Put (" >= ");
               D (Node.Op_2);
            when Eq_Expr =>
               D (Node.Op_1);
               Put (" = ");
               D (Node.Op_2);
            when Ne_Expr =>
               D (Node.Op_1);
               Put (" /= ");
               D (Node.Op_2);
            when Bit_And_Expr =>
               D (Node.Op_1);
               Put (" and ");
               D (Node.Op_2);
            when Negate_Expr =>
               Put ("-");
               D (Node.Op_1);
            when Abs_Expr =>
               Put ("abs ");
               D (Node.Op_1);
            when Truth_Not_Expr =>
               Put ("not ");
               D (Node.Op_1);
            when Discrim_Val =>
               declare
                  Disc : constant String := Node.Discriminant_Number'Image;
               begin
                  Put ("#" & Disc (Disc'First + 1 .. Disc'Last));
               end;
            when Literal =>
               Put (Node.Value.Image);
         end case;
         if Parens_Needed then
            Put (")");
         end if;
      end Dump;

   begin
      Dump (Node, 0);
      New_Line;
   end Dump_Expr;

   --------------
   -- Evaluate --
   --------------

   function Evaluate
     (Self          : Numerical_Expression;
      Discriminants : Discriminant_Values) return GMP_Int.Big_Integer
   is
      use type GMP_Int.Big_Integer;

      function "+" (Self : GMP_Int.Big_Integer) return GMP_Int.Big_Integer;
      --  Create a copy of ``Self``

      function Eval (Node : Expr_Node_Access) return GMP_Int.Big_Integer;
      --  Evaluate the ``Node`` subexpression

      function Eval_As_Bool (Node : Expr_Node_Access) return Boolean;
      --  Likewise, but convert the result to a boolean (zero is False,
      --  everything else is True).

      ---------
      -- "+" --
      ---------

      function "+" (Self : GMP_Int.Big_Integer) return GMP_Int.Big_Integer is
      begin
         return Result : GMP_Int.Big_Integer do
            Result.Set (Self);
         end return;
      end "+";

      ----------
      -- Eval --
      ----------

      function Eval (Node : Expr_Node_Access) return GMP_Int.Big_Integer is
      begin
         case Node.Code is
            when Cond_Expr =>
               declare
                  Cond : constant GMP_Int.Big_Integer := Eval (Node.Op_1);
               begin
                  return (if Cond = Zero
                          then Eval (Node.Op_3)
                          else Eval (Node.Op_2));
               end;

            when Plus_Expr =>
               return Eval (Node.Op_1) + Eval (Node.Op_2);
            when Minus_Expr =>
               return Eval (Node.Op_1) - Eval (Node.Op_2);
            when Mult_Expr =>
               return Eval (Node.Op_1) * Eval (Node.Op_2);

            when Trunc_Div_Expr =>
               return GMP_Int.Truncate_Divide
                 (Eval (Node.Op_1), Eval (Node.Op_2));
            when Ceil_Div_Expr =>
               return GMP_Int.Ceil_Divide
                 (Eval (Node.Op_1), Eval (Node.Op_2));
            when Floor_Div_Expr =>
               return GMP_Int.Floor_Divide
                 (Eval (Node.Op_1), Eval (Node.Op_2));

            when Trunc_Mod_Expr =>
               return GMP_Int.Truncate_Remainder
                 (Eval (Node.Op_1), Eval (Node.Op_2));
            when Floor_Mod_Expr =>
               return GMP_Int.Floor_Remainder
                 (Eval (Node.Op_1), Eval (Node.Op_2));
            when Ceil_Mod_Expr =>
               return GMP_Int.Ceil_Remainder
                 (Eval (Node.Op_1), Eval (Node.Op_2));

            when Exact_Div_Expr =>
               return Eval (Node.Op_1) / Eval (Node.Op_2);

            when Min_Expr =>
               declare
                  L : constant GMP_Int.Big_Integer := Eval (Node.Op_1);
                  R : constant GMP_Int.Big_Integer := Eval (Node.Op_2);
               begin
                  return (if L < R then +L else +R);
               end;
            when Max_Expr =>
               declare
                  L : constant GMP_Int.Big_Integer := Eval (Node.Op_1);
                  R : constant GMP_Int.Big_Integer := Eval (Node.Op_2);
               begin
                  return (if L < R then +R else +L);
               end;

            when Truth_And_Expr =>
               return (if Eval_As_Bool (Node.Op_1)
                          and then Eval_As_Bool (Node.Op_2)
                       then +One
                       else +Zero);
            when Truth_Or_Expr =>
               return (if Eval_As_Bool (Node.Op_1)
                          or else Eval_As_Bool (Node.Op_2)
                       then +One
                       else +Zero);
            when Truth_Xor_Expr =>
               return (if Eval_As_Bool (Node.Op_1) /= Eval_As_Bool (Node.Op_2)
                       then +One
                       else +Zero);

            when Lt_Expr =>
               return (if Eval (Node.Op_1) < Eval (Node.Op_2)
                       then +One
                       else +Zero);
            when Le_Expr =>
               return (if Eval (Node.Op_1) <= Eval (Node.Op_2)
                       then +One
                       else +Zero);
            when Gt_Expr =>
               return (if Eval (Node.Op_1) > Eval (Node.Op_2)
                       then +One
                       else +Zero);
            when Ge_Expr =>
               return (if Eval (Node.Op_1) >= Eval (Node.Op_2)
                       then +One
                       else +Zero);
            when Eq_Expr =>
               return (if Eval (Node.Op_1) = Eval (Node.Op_2)
                       then +One
                       else +Zero);
            when Ne_Expr =>
               return (if Eval (Node.Op_1) /= Eval (Node.Op_2)
                       then +One
                       else +Zero);

            when Bit_And_Expr =>
               return Eval (Node.Op_1) and Eval (Node.Op_2);

            when Negate_Expr =>
               return -Eval (Node.Op_1);

            when Abs_Expr =>
               return abs Eval (Node.Op_1);
            when Truth_Not_Expr =>
               return (if Eval_As_Bool (Node.Op_1) then +Zero else +One);
            when Discrim_Val =>
               return Result : GMP_Int.Big_Integer do
                  Result.Set (Discriminants (Node.Discriminant_Number));
               end return;
            when Literal =>
               return +Node.Value.all;
         end case;
      end Eval;

      ------------------
      -- Eval_As_Bool --
      ------------------

      function Eval_As_Bool (Node : Expr_Node_Access) return Boolean is
      begin
         return Eval (Node) /= Zero;
      end Eval_As_Bool;

   begin
      return Eval (Self.Data.Root);
   end Evaluate;

   ---------------------
   -- Resolved_Record --
   ---------------------

   function Resolved_Record
     (Self          : Type_Representation;
      Discriminants : Discriminant_Values) return Resolved_Record_Type
   is
      package Resolved_Component_Vectors is new Ada.Containers.Vectors
        (Positive, Resolved_Component);
      use Resolved_Component_Vectors;

      Comps : Vector;

      procedure Append (C : Component_Representation);
      --  Resolve ``C`` and add the result to ``Comps``

      procedure Process_Variant_Part (Variants : Variant_Representation_Array);
      --  Call ``Append`` on all components of the variant in ``Variants`` that
      --  is active according to ``Discriminants``.

      function Evaluate (Expr : Numerical_Expression) return Size_Type;
      --  Shortcut to evaluate an expression using ``Discriminants`` and to
      --  return the result as a ``Size_Type``.

      ------------
      -- Append --
      ------------

      procedure Append (C : Component_Representation) is
         Decl            : constant Defining_Name := Declaration (C);
         Artificial_Name : constant Text_Type :=
           (if Decl.Is_Null
            then Component_Name (C)
            else "");
      begin
         Comps.Append
           (Resolved_Component'
              (Declaration     => Decl,
               Artificial_Name => To_Unbounded_Text (Artificial_Name),
               Position        => Evaluate (Position (C)),
               First_Bit       => First_Bit (C),
               Size            => Evaluate (Size (C))));
      end Append;

      --------------------------
      -- Process_Variant_Part --
      --------------------------

      procedure Process_Variant_Part (Variants : Variant_Representation_Array)
      is
         Is_Present : GMP_Int.Big_Integer;
      begin
         --  Select the first variant whose "Present" expression evaluates to
         --  non-zero.

         for V of Variants loop
            Is_Present.Set (Evaluate (Present (V), Discriminants));
            if not GMP_Int."=" (Is_Present, Zero) then

               --  Add resolved components from this variant, and from
               --  potential subvariants.

               for C of Components (V) loop
                  Append (C);
               end loop;
               if Has_Subvariant_Part (V) then
                  Process_Variant_Part (Subvariants (V));
               end if;

               return;
            end if;
         end loop;
      end Process_Variant_Part;

      --------------
      -- Evaluate --
      --------------

      function Evaluate (Expr : Numerical_Expression) return Size_Type is
         use type GMP_Int.Big_Integer;

         Result : constant GMP_Int.Big_Integer :=
           Evaluate (Expr, Discriminants);
      begin
         if Result < Zero or else Result > Size_Last then
            raise Resolution_Error;
         end if;
         return Size_Type'Value (Result.Image);
      end Evaluate;

   begin
      --  Add resolved components from the "root" record and from variant parts

      for C of Components (Self) loop
         Append (C);
      end loop;
      if Has_Variant_Part (Self) then
         Process_Variant_Part (Variants (Self));
      end if;

      --  Resolve other attributes

      return Result : Resolved_Record_Type (Natural (Comps.Length)) do
         Result.Alignment := Alignment (Self);
         Result.Object_Size := Evaluate (Object_Size (Self));
         Result.Value_Size := Evaluate (Value_Size (Self));
         Result.Bit_Order := Bit_Order (Self);
         Result.Scalar_Storage_Order := Scalar_Storage_Order (Self);
         for Cur in Comps.Iterate loop
            Result.Components (To_Index (Cur)) := Element (Cur);
         end loop;
      end return;
   end Resolved_Record;

   ------------
   -- Lookup --
   ------------

   function Lookup
     (Self : Repinfo_Collection;
      Decl : Base_Type_Decl'Class) return Type_Representation
   is
      use Type_Representation_Maps;
   begin
      if Self.Is_Null or else Decl.Is_Null then
         return No_Type_Representation;
      end if;

      declare
         Collection : Repinfo_Collection_Data renames Self.Unchecked_Get.all;

         --  Build a symbol for the fully qualified name of this type

         FQN : constant Text_Type := Decl.P_Fully_Qualified_Name;
         Key : constant Symbol_Type := Symbolize (Collection, FQN);

         --  Look for a corresponding type representation entry

         Cur : constant Cursor := Collection.Type_Representations.Find (Key);
      begin
         Trace.Trace ("Looking for representation of " & Image (FQN));
         return (if Has_Element (Cur)
                 then Wrap (Element (Cur), Decl, Self)
                 else No_Type_Representation);
      end;
   end Lookup;

   ----------
   -- Load --
   ----------

   function Load (Filenames : Filename_Array) return Repinfo_Collection is
      package Origin_Maps is new Ada.Containers.Hashed_Maps
        (Key_Type        => Symbol_Type,
         Element_Type    => Unbounded_String,
         Hash            => Hash,
         Equivalent_Keys => "=");
      Origins : Origin_Maps.Map;
      --  Mapping from the fully qualified name of imported entity to the
      --  JSON file name from which it was imported. Used for duplicates error
      --  reporting.

      --  Build the collection in place: create a refcounted pointer to an
      --  empty collection (``Result_Ref``), then get a raw access to the
      --  collection (``Result``), and finally fill the collection in.

      Result_Ref : Repinfo_Collection;
      Result     : Collection_Refs.Element_Access;
   begin
      Result_Ref.Set (Repinfo_Collection_Data'(others => <>));
      Result := Result_Ref.Unchecked_Get;

      --  Initialize internal tables

      Result.Pool := Create;
      Result.Symbols := Create_Symbol_Table;

      --  Import all entities from the parsing of all input files

      for XFilename of Filenames loop
         declare
            Filename : constant String := To_String (XFilename);
            Root     : JSON_Value;
            Entities : JSON_Array;
         begin
            if Trace.Is_Active then
               Trace.Trace ("Loading from " & Filename);
               Trace.Increase_Indent;
            end if;

            Root := Load_JSON (Filename);
            if Root.Kind /= JSON_Array_Type then
               raise Loading_Error with Filename & ": invalid root element";
            end if;
            Entities := Root.Get;

            for Entity of Entities loop
               if Entity.Kind /= JSON_Object_Type
                  or else not Entity.Has_Field ("name")
                  or else Entity.Get ("name").Kind /= JSON_String_Type
               then
                  raise Loading_Error with Filename & ": invalid entity found";
               end if;

               declare
                  Name      : constant String := Entity.Get ("name");
                  Key       : constant Symbol_Type :=
                    Symbolize (Result.all, Name);
                  Type_Repr : Type_Representation_Access;

                  --  Check that this is the first entity description for that
                  --  name.

                  Previous_From : Origin_Maps.Cursor;
                  Inserted      : Boolean;
               begin
                  Origins.Insert (Key, XFilename, Previous_From, Inserted);
                  if not Inserted then
                     raise Loading_Error with
                       Filename & ": duplicate entry for " & Name & " (from "
                       & To_String (Origins.Reference (Previous_From)) & ")";
                  end if;

                  --  Do the import iff we handle this kind of entity

                  if Trace.Is_Active then
                     Trace.Trace ("Loading entry: " & Name);
                     Trace.Increase_Indent;
                  end if;
                  begin
                     Type_Repr := Load_Type (Result.all, Entity, Name);
                  exception
                     when others =>
                        if Trace.Is_Active then
                           Trace.Decrease_Indent;
                        end if;
                        raise;
                  end;
                  if Trace.Is_Active then
                     Trace.Decrease_Indent;
                  end if;

                  if Type_Repr /= null then
                     Result.Type_Representations.Insert (Key, Type_Repr);
                  end if;
               end;
            end loop;

            --  Make sure the trace is decreased when terminating or aborting
            --  the iteration.

            if Trace.Is_Active then
               Trace.Decrease_Indent;
            end if;
         exception
            when others =>
               if Trace.Is_Active then
                  Trace.Decrease_Indent;
               end if;
               raise;
         end;
      end loop;

      return Result_Ref;
   end Load;

   ---------------------------
   -- Load_From_Directories --
   ---------------------------

   function Load_From_Directories
     (Name_Pattern : GNAT.Regexp.Regexp := Default_JSON_Filename_Regexp;
      Directories  : Filename_Array) return Repinfo_Collection
   is
      use GNATCOLL.VFS;
      Files : File_Array_Access;
   begin
      --  Convert Directories to File_Array and find all the JSON files to load

      declare
         Dirs : File_Array (Directories'Range);
      begin
         for I in Dirs'Range loop
            Dirs (I) := Create (+To_String (Directories (I)));
         end loop;
         Files := Find_Files_Regexp (Name_Pattern, Dirs);

         --  Sort files, for the determinism of the output

         Sort (Files.all);
      end;

      --  Now convert the list of files to the expected type

      declare
         Filenames : Filename_Array (Files.all'Range);
      begin
         for I in Filenames'Range loop
            Filenames (I) := To_Unbounded_String (+Files.all (I).Full_Name);
         end loop;
         Unchecked_Free (Files);

         --  Finally, load the JSON file

         return Load (Filenames);
      end;
   end Load_From_Directories;

   -------------------------
   -- Load_From_Directory --
   -------------------------

   function Load_From_Directory
     (Name_Pattern : GNAT.Regexp.Regexp := Default_JSON_Filename_Regexp;
      Directory    : String) return Repinfo_Collection is
   begin
      return Load_From_Directories
        (Name_Pattern, (1 => To_Unbounded_String (Directory)));
   end Load_From_Directory;

   -----------------------
   -- Load_From_Project --
   -----------------------

   function Load_From_Project
     (Tree    : GPR2.Project.Tree.Object;
      View    : GPR2.Project.View.Object := GPR2.Project.View.Undefined;
      Subdirs : String := "repinfo";
      Force   : Boolean := False) return Repinfo_Collection
   is
      use GNATCOLL.OS.FS;
      use GNATCOLL.OS.Process;
      use type GPR2.Filename_Optional;

      Filenames : GPR2.Path_Name.Set.Object;

      --  Build the command line for gprbuild

      Args : Argument_List;
   begin
      Args.Append ("gprbuild");
      Args.Append ("-c");
      Args.Append ("-P" & String (Tree.Root_Project.Path_Name.Value));

      --  Add "-X" arguments for external variables

      if Tree.Has_Context then
         for Cur in Tree.Context.Iterate loop
            declare
               use GPR2.Context.Key_Value;

               Name  : constant GPR2.Name_Type := Key (Cur);
               Value : constant GPR2.Value_Type := Element (Cur);
            begin
               Args.Append ("-X" & String (Name) & "=" & String (Value));
            end;
         end loop;
      end if;

      --  If there is a configuration project, pass "--config". Otherwise pass
      --  "--target" and "--RTS" arguments according to project settings.

      declare
         Config_Prj_File : constant GPR2.Path_Name.Object :=
           (if Tree.Has_Configuration
            then Tree.Configuration.Corresponding_View.Path_Name
            else GPR2.Path_Name.Undefined);
      begin
         if Config_Prj_File.Is_Defined and then Config_Prj_File.Exists then
            Args.Append ("--config=" & String (Config_Prj_File.Value));
         else
            Args.Append ("--target=" & String (Tree.Target));

            --  Determine the list of languages used in the project tree and
            --  emit one "--RTS:<lang>" argument for each that has a runtime.

            declare
               Langs : GPR2.Containers.Language_Set;
            begin
               for V of Tree.Root_Project.Closure loop
                  for L of V.Language_Ids loop
                     Langs.Include (L);
                  end loop;
               end loop;
               for L of Langs loop
                  declare
                     Runtime : constant String := String (Tree.Runtime (L));
                  begin
                     if Runtime'Length > 0 then
                        Args.Append
                          ("--RTS:" & String (GPR2.Name (L)) & "=" & Runtime);
                     end if;
                  end;
               end loop;
            end;
         end if;
      end;

      if Subdirs'Length > 0 then
         Args.Append ("--subdirs=" & Subdirs);
      end if;

      if Force then
         Args.Append ("-f");
      end if;

      --  Build all Ada sources with the -gnatR4js flag, to generate JSON
      --  repinfo in object directories.

      Args.Append ("-cargs:Ada");
      Args.Append ("-gnatR4js");

      --  If requested, print gprbuild arguments on the standard output

      if Trace.Is_Active then
         declare
            Msg : Unbounded_String :=
              To_Unbounded_String ("gprbuild arguments:");
         begin
            for A of Args loop
               Append (Msg, " " & A);
            end loop;
            Trace.Trace (To_String (Msg));
         end;
      end if;

      declare
         Exit_Code : constant Integer := Run
           (Args   => Args,
            Cwd    => "",
            Stdin  => Null_FD,
            Stdout => (if Trace.Is_Active then Standout else Null_FD),
            Stderr => (if Trace.Is_Active then Standerr else Null_FD));
      begin
         if Exit_Code /= 0 then
            raise Gprbuild_Error with
              "gprbuild exited with status code " & Exit_Code'Image;
         end if;
      end;

      --  Look for JSON files for all Ada sources

      declare
         Actual_View   : constant GPR2.Project.View.Object :=
           (if View.Is_Defined then View else Tree.Root_Project);
         Loaded_Subdir : constant GPR2.Filename_Optional := Tree.Subdirs;
         Obj_Dir       : GPR2.Path_Name.Object;
         Repinfo_File  : GPR2.Path_Name.Object;
      begin
         for V of Closure (Actual_View) loop
            Trace.Increase_Indent ("Processing subproject " & String (V.Name));

            --  If Tree was loaded with subdirs, remove it from Obj_Dir, then
            --  add our own, if requested. This should get us the object
            --  directory that gprbuild used.

            Obj_Dir := V.Object_Directory;
            if Loaded_Subdir'Length > 0 then
               pragma Assert (Obj_Dir.Simple_Name = Loaded_Subdir);
               Obj_Dir := Obj_Dir.Containing_Directory;
            end if;
            if Subdirs'Length > 0 then
               Obj_Dir := Obj_Dir.Compose
                 (GPR2.Filename_Type (Subdirs), Directory => True);
            end if;
            Trace.Trace ("Object directory: " & String (Obj_Dir.Value));

            for S of V.Sources loop
               if S.Is_Ada then
                  Trace.Trace
                    ("Processing Ada source: " & String (S.Path_Name.Value));
                  Repinfo_File :=
                    Obj_Dir.Compose (S.Path_Name.Simple_Name & ".json");
                  if Repinfo_File.Exists then
                     Trace.Trace ("Found: " & String (Repinfo_File.Value));
                     Filenames.Append (Repinfo_File);
                  else
                     Trace.Trace ("Not found: " & String (Repinfo_File.Value));
                  end if;
               end if;
            end loop;

            Trace.Decrease_Indent;
         end loop;
      end;

      --  Now that we have the list of JSON files to load, just build the
      --  result.

      declare
         F_List : Filename_Array (1 .. Natural (Filenames.Length));
         Next   : Positive := F_List'First;
      begin
         for F of Filenames loop
            F_List (Next) := To_Unbounded_String (String (F.Value));
            Next := Next + 1;
         end loop;
         return Load (F_List);
      end;
   end Load_From_Project;

   -------------
   -- Release --
   -------------

   procedure Release (Self : in out Repinfo_Collection_Data) is
      Var_I   : Integer_Access;
      Var_R   : Rational_Access;
      Var_CRA : Component_Representation_Access_Array_Access;
      Var_VRA : Variant_Representation_Access_Array_Access;
   begin
      Free (Self.Pool);

      for I of Self.Integers loop
         Var_I := I;
         Free (Var_I);
      end loop;
      Self.Integers.Destroy;
      for R of Self.Rationals loop
         Var_R := R;
         Free (Var_R);
      end loop;
      Self.Rationals.Destroy;

      for CRA of Self.Component_Repinfo_Arrays loop
         Var_CRA := CRA;
         Free (Var_CRA);
      end loop;
      Self.Component_Repinfo_Arrays.Destroy;
      for VRA of Self.Variant_Repinfo_Arrays loop
         Var_VRA := VRA;
         Free (Var_VRA);
      end loop;
      Self.Variant_Repinfo_Arrays.Destroy;

      Destroy (Self.Symbols);
   end Release;

end Libadalang.Data_Decomposition;