gnatprove_13.2.1_28fc3583/share/examples/spark/spark_book/Chapter-06/tests/very_longs-test.adb

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
with Ada.Assertions;
with Ada.Text_IO;

package body Very_Longs.Test is
   use Ada.Assertions;

   subtype Hex_String is String(1 .. 48);
   Bad_Hex_Digit : exception;

   --
   -- Test procedures
   --

   procedure Test_Natural_Constructor is
      type Test_Case is
         record
            N        : Integer;
            Expected : Hex_String;
         end record;

      subtype Test_Index is Integer range 1 .. 5;
      Test_Cases : array(Test_Index) of Test_Case :=
        (( N =>            1, Expected => "000000000000000000000000000000000000000000000001"),
         ( N =>     16#FFFF#, Expected => "00000000000000000000000000000000000000000000FFFF"),
         ( N =>    16#10000#, Expected => "000000000000000000000000000000000000000000010000"),
         ( N => 16#5A5A5A5A#, Expected => "00000000000000000000000000000000000000005A5A5A5A"),
         ( N => 16#7FFFFFFF#, Expected => "00000000000000000000000000000000000000007FFFFFFF"));

      Number : Very_Long(24);
   begin
      Number := Make_From_Natural(Number => 0, Length => 24);
      for I in Test_Index loop
         Number := Make_From_Natural(Number => Test_Cases(I).N, Length => 24);
      end loop;
   end Test_Natural_Constructor;


   procedure Test_String_Constructor is
      type Test_Case is
         record
            N : Hex_String;
         end record;

      subtype Test_Index is Integer range 1 .. 4;
      Test_Cases : array(Test_Index) of Test_Case :=
        ((N        => "000000000000000000000000000000000000000000000005"),
         (N        => "000000000000000000000000000000000000000100000000"),
         (N        => "00000000000000000000000000000000FFFFFFFFFFFFFFFF"),
         (N        => "000000000000000000000000000000010000000000000000"));

      Number     : Very_Long(24);
      Valid      : Boolean;
      Bad_Digits : String := "000000001122334455667788990x11223344556677889900";
   begin
      for I in Test_Index loop
         Make_From_Hex_String(Test_Cases(I).N, Number, Valid);
         Assert(Valid, "Bad hex string in Test_String_Constructor");
      end loop;

      Make_From_Hex_String(Bad_Digits, Number, Valid);
      Assert(not Valid, "Hex string with bad digits accepted as valid");
   end Test_String_Constructor;


   procedure Test_Relationals is
      Number1, Number2 : Very_Long(24);
   begin
      Number1 := Make_From_Natural(Number => 0, Length => 24);
      Number2 := Make_From_Natural(Number => 2, Length => 24);

      -- Compare: 0 op 2 (for op in { <, =, <=, >, >= }).
      Assert(    (Number1 <  Number2), "Bad relational ( 1)");
      Assert(not (Number1 =  Number2), "Bad relational ( 2)");
      Assert(    (Number1 <= Number2), "Bad relational ( 3)");
      Assert(not (Number1 >  Number2), "Bad relational ( 4)");
      Assert(not (Number1 >= Number2), "Bad relational ( 5)");

      -- Compare them in the other order.
      Assert(not (Number2 <  Number1), "Bad relational ( 6)");
      Assert(not (Number2 =  Number1), "Bad relational ( 7)");
      Assert(not (Number2 <= Number1), "Bad relational ( 8)");
      Assert(    (Number2 >  Number1), "Bad relational ( 9)");
      Assert(    (Number2 >= Number1), "Bad relational (10)");

      -- Compare: 1 op 2
      Number1 := Make_From_Natural(Number => 1, Length => 24);
      Assert(    (Number1 <  Number2), "Bad relational (11)");
      Assert(not (Number1 =  Number2), "Bad relational (12)");
      Assert(    (Number1 <= Number2), "Bad relational (13)");
      Assert(not (Number1 >  Number2), "Bad relational (14)");
      Assert(not (Number1 >= Number2), "Bad relational (15)");

      -- Compare: 2 op 2
      Number1 := Make_From_Natural(Number => 2, Length => 24);
      Assert(not (Number1 <  Number2), "Bad relational (16)");
      Assert(    (Number1 =  Number2), "Bad relational (17)");
      Assert(    (Number1 <= Number2), "Bad relational (18)");
      Assert(not (Number1 >  Number2), "Bad relational (19)");
      Assert(    (Number1 >= Number2), "Bad relational (20)");
   end Test_Relationals;


   procedure Test_Addition is
      type Test_Case is
         record
            X : Hex_String;
            Y : Hex_String;
            Z : Hex_String;  -- Z = X + Y
         end record;

      subtype Test_Index is Integer range 1 .. 9;
      Test_Cases : array(Test_Index) of Test_Case :=
        (1 => (X => "000000000000000000000000000000000000000000000000",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000001"),

         2 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000000",
               Z => "000000000000000000000000000000000000000000000001"),

         3 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000002",
               Z => "000000000000000000000000000000000000000000000003"),

         4 => (X => "000000000000000000000000000001234567890987654321",
               Y => "000000000000000000000000000000000000000000000000",
               Z => "000000000000000000000000000001234567890987654321"),

         5 => (X => "000000000000000000000000000001234567890987654321",
               Y => "000000000000000000000000000001234567890987654321",
               Z => "000000000000000000000000000002468ACF12130ECA8642"),

         6 => (X => "00000000000000000000000000000000000000000000FFFF",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000010000"),

         7 => (X => "0000000000000000000000000000000000000000ffffffff",  -- Also check lower case letters.
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000100000000"),

         8 => (X => "00000000000000000000000000000000ffFFffFFffFFffFF",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000010000000000000000"),

         9 => (X => "FFFFFFFFFfFfFfFfFfFfFfFfFfFffFfFfFfFfFfFfFfFfFfF",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000000"));

      X, Y, Sum : Very_Long(24);
      Expected  : Very_Long(24);
      Valid     : Boolean;
   begin
      for I in Test_Index loop
         -- I'm just going to assume the conversions work (the strings are hard coded literals, after all)!
         Make_From_Hex_String(Test_Cases(I).X, X, Valid);
         Make_From_Hex_String(Test_Cases(I).Y, Y, Valid);
         Make_From_Hex_String(Test_Cases(I).Z, Expected, Valid);
         Sum := ModAdd(X, Y);
         Assert(Sum = Expected, "Bad addition in case #" & Integer'Image(I));
      end loop;
   end Test_Addition;


   procedure Test_Subtraction is
      type Test_Case is
         record
            X : Hex_String;
            Y : Hex_String;
            Z : Hex_String;  -- Z = X - Y
         end record;

      subtype Test_Index is Integer range 1 .. 9;
      Test_Cases : array(Test_Index) of Test_Case :=
        (1 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000000"),

         2 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000000",
               Z => "000000000000000000000000000000000000000000000001"),

         3 => (X => "000000000000000000000000000000000000000000000003",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000002"),

         4 => (X => "000000000000000000000000000001234567890987654321",
               Y => "000000000000000000000000000000000000000000000000",
               Z => "000000000000000000000000000001234567890987654321"),

         5 => (X => "000000000000000000000000000002468ACF12130ECA8642",
               Y => "000000000000000000000000000001234567890987654321",
               Z => "000000000000000000000000000001234567890987654321"),

         6 => (X => "000000000000000000000000000000000000000000010000",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "00000000000000000000000000000000000000000000FFFF"),

         7 => (X => "000000000000000000000000000000000000000100000000",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "0000000000000000000000000000000000000000ffffffff"),   -- Also check lower case letters.

         8 => (X => "000000000000000000000000000000010000000000000000",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "00000000000000000000000000000000ffFFffFFffFFffFF"),

         9 => (X => "000000000000000000000000000000000000000000000000",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "FfFfFfFfFfFfFfFfFfFfFfFfFfFffFfFfFfFfFfFfFfFfFfF"));

      X, Y, Difference : Very_Long(24);
      Expected : Very_Long(24);
      Valid    : Boolean;
   begin
      for I in Test_Index loop
         -- I'm just going to assume the conversions work (the strings are hard coded literals, after all)!
         Make_From_Hex_String(Test_Cases(I).X, X, Valid);
         Make_From_Hex_String(Test_Cases(I).Y, Y, Valid);
         Make_From_Hex_String(Test_Cases(I).Z, Expected, Valid);
         Difference := ModSubtract(X, Y);
         Assert(Difference = Expected, "Bad subtraction in case #" & Integer'Image(I));
      end loop;
   end Test_Subtraction;


   procedure Test_Multiplication is
      type Test_Case is
         record
            X : Hex_String;
            Y : Hex_String;
            Z : Hex_String;  -- Z = X * Y
         end record;

      subtype Test_Index is Integer range 1 .. 5;
      Test_Cases : array(Test_Index) of Test_Case :=
        (1 => (X => "000000000000000000000000000000000000000000000000",
               Y => "000000000000000000000000000000000000000000000000",
               Z => "000000000000000000000000000000000000000000000000"),

         2 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000001"),

         3 => (X => "000000000000000000000000000000000000000000000001",
               Y => "000000000000000000000000000000000000000000000002",
               Z => "000000000000000000000000000000000000000000000002"),

         4 => (X => "000000000000000000000000000000000000000000000002",
               Y => "000000000000000000000000000000000000000000000001",
               Z => "000000000000000000000000000000000000000000000002"),

         5 => (X => "00000000000000000000000000000000112210F4B16C1CB1",
               Y => "000000000000000000000000000000004ECF8A71CED0C6E2",
               Z => "0000000000000000054644FA3EEF2D71E014744CFD723A42"));

      X, Y, Product : Very_Long(24);
      Expected      : Very_Long(24);
      Valid         : Boolean;
   begin
      for I in Test_Index loop
         -- I'm just going to assume the conversions work (the strings are hard coded literals, after all)!
         Make_From_Hex_String(Test_Cases(I).X, X, Valid);
         Make_From_Hex_String(Test_Cases(I).Y, Y, Valid);
         Make_From_Hex_String(Test_Cases(I).Z, Expected, Valid);
         Product := ModMultiply(X, Y);
         Assert(Product = Expected, "Bad multiplication in case #" & Integer'Image(I));
      end loop;
   end Test_Multiplication;


   procedure Test_Multiplication_Full is
      type Test_Case is
         record
            X : Hex_String;
            Y : Hex_String;
            Z : String(1 .. 96);  -- Z = X * Y
         end record;

      -- Test cases were computed with the 'dc' program.
      subtype Test_Index is Integer range 1 .. 2;
      Test_Cases : array(Test_Index) of Test_Case :=
        (1 => (X => "00000000000000000000000000000000112210F4B16C1CB1",
               Y => "000000000000000000000000000000004ECF8A71CED0C6E2",
               Z => "0000000000000000000000000000000000000000000000000000000000000000054644FA3EEF2D71E014744CFD723A42"),

         2 => (X => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               Y => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               Z => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE000000000000000000000000000000000000000000000001"));

      X, Y     : Very_Long(24);
      Product  : Very_Long(48);
      Expected : Very_Long(48);
      Valid    : Boolean;
   begin
      for I in Test_Index loop
         -- I'm just going to assume the conversions work (the strings are hard coded literals, after all)!
         Make_From_Hex_String(Test_Cases(I).X, X, Valid);
         Make_From_Hex_String(Test_Cases(I).Y, Y, Valid);
         Make_From_Hex_String(Test_Cases(I).Z, Expected, Valid);
         Product := X * Y;
         Assert(Product = Expected, "Bad full multiplication in case #" & Integer'Image(I));
      end loop;
   end Test_Multiplication_Full;


   procedure Test_Division is
      type Test_Case is
         record
            U : String(1 .. 96);
            V : Hex_String;
            Q : String(1 .. 96);  -- Q = floor(U / V);
            R : Hex_String;       -- R = U mod V;
         end record;

      -- Just "typical" test cases for now. Must also exercise the "Add Back" step in Knuth's algorithm. That step occurs with
      -- low probability so it is necessary to construct special test cases to exercise it. Test cases below created with the
      -- 'dc' program on Ubuntu Linux 12.04.
      --
      subtype Test_Index is Integer range 1 .. 12;
      Test_Cases : array(Test_Index) of Test_Case :=
        -- Non-trivial with pattern.
        (1 => (U => "010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748",
               V => "00112233445566778899AABBCCDDEEFF0011223344556677",
               Q => "00000000000000000000000000000000000000000000000F0F0F0F0F0F0F0F0F690F0F0F0F0FFF0F0F0F690F0F0F8CB8",
               R => "000870D941B118811958202890FA67E9D23AD31179E28DC0"),

         -- "Random."
         2 => (U => "73D89CAA0082F227719B9992DD37782001844A43C784B99C512A83C422A34B860CAD328659287BB21FEE282A9DF2E483",
               V => "428BB453A749C933FDC291A77CBE892001B5882345829AC7",
               Q => "000000000000000000000000000000000000000000000001BDA85E584B55AB859B1C09C3FC3BB62C84478E492FDDC56B",
               R => "39A4E4D22AD4C10B9264E0B9D8CDA672E9CB9C05E8761056"),

         -- Random with MSD of V at 01.
         3 => (U => "73D89CAA0082F227719B9992DD37782001844A43C784B99C512A83C422A34B860CAD328659287BB21FEE282A9DF2E483",
               V => "018BB453A749C933FDC291A77CBE892001B5882345829AC7",
               Q => "00000000000000000000000000000000000000000000004AF245E1C2BC1C960C537D183E413EBBA181FEDF9330BA8924",
               R => "00C52A8CE858768071B369671E296953AE9EEBD32E2AA187"),

         -- Random with MSD of V at 7F.
         4 => (U => "73D89CAA0082F227719B9992DD37782001844A43C784B99C512A83C422A34B860CAD328659287BB21FEE282A9DF2E483",
               V => "7F8BB453A749C933FDC291A77CBE892001B5882345829AC7",
               Q => "000000000000000000000000000000000000000000000000E8847ADA09C5AA87714598019D0E62B296D3D7E3EF103639",
               R => "201C036A415218687F43B0CF3F2AA96884E0C18821C87434"),

         -- Random with MSD of V at 80.
         5 => (U => "73D89CAA0082F227719B9992DD37782001844A43C784B99C512A83C422A34B860CAD328659287BB21FEE282A9DF2E483",
               V => "808BB453A749C933FDC291A77CBE892001B5882345829AC7",
               Q => "000000000000000000000000000000000000000000000000E6B56B4B96E478E4114477F727940CD4E3116D085DBC239F",
               R => "48D3931409995E53691BB2A658DE8966F037B865A1878DEA"),

         -- Random with MSD of V at FF.
         6 => (U => "73D89CAA0082F227719B9992DD37782001844A43C784B99C512A83C422A34B860CAD328659287BB21FEE282A9DF2E483",
               V => "FF8BB453A749C933FDC291A77CBE892001B5882345829AC7",
               Q => "000000000000000000000000000000000000000000000000740D55028EBFAE1701477EEE2CF64D0428EFF6728935DF82",
               R => "9FED98AA125DA4842160F1C365245FCA03FADD380299F275"),

         -- Largest possible U, smallest possible V using the "full" algorithm.
         7 => (U => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               V => "000000000000000000000000000000000000000000000100",
               Q => "00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               R => "0000000000000000000000000000000000000000000000FF"),

         -- Largest possible U, largest possible V.
         8 => (U => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               V => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               Q => "000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000001",
               R => "000000000000000000000000000000000000000000000000"),

         -- Smallest possible U, smallest possible V using the "full" algorithm.
         9 => (U => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
               V => "000000000000000000000000000000000000000000000100",
               Q => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
               R => "000000000000000000000000000000000000000000000001"),

         -- Smallest possible U, largest possible V.
        10 => (U => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
               V => "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               Q => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
               R => "000000000000000000000000000000000000000000000001"),

      -- Partial U, similar V, quotient of 1.
        11 => (U => "000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000",
               V => "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               Q => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
               R => "000000000000000000000000000000000000000000000001"),

      -- Partial U, similar V, quotient of 0.
        12 => (U => "0000000000000000000000000000000000000000000000007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
               V => "800000000000000000000000000000000000000000000000",
               Q => "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
               R => "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"));

      U : Very_Long(48);
      V : Very_Long(24);
      Q : Very_Long(48);
      R : Very_Long(24);
      Expected_Q : Very_Long(48);
      Expected_R : Very_Long(24);
      Valid : Boolean;
   begin
      for I in Test_Index loop
         -- I'm just going to assume the conversions work (the strings are hard coded literals, after all)!
         Make_From_Hex_String(Test_Cases(I).U, U, Valid);
         Make_From_Hex_String(Test_Cases(I).V, V, Valid);
         Make_From_Hex_String(Test_Cases(I).Q, Expected_Q, Valid);
         Make_From_Hex_String(Test_Cases(I).R, Expected_R, Valid);
         Divide(U, V, Q, R);
         Assert(Q = Expected_Q, "Bad division: incorrect quotient in case #" & Integer'Image(I));
         Assert(R = Expected_R, "Bad division: incorrect remainder in case #" & Integer'Image(I));
      end loop;
   end Test_Division;


   procedure Execute is
   begin
      Ada.Text_IO.Put_Line("... Natural constructor");   Test_Natural_Constructor;
      Ada.Text_IO.Put_Line("... String constructor");    Test_String_Constructor;
      Ada.Text_IO.Put_Line("... Relational operators");  Test_Relationals;
      Ada.Text_IO.Put_Line("... Addition");              Test_Addition;
      Ada.Text_IO.Put_Line("... Subtraction");           Test_Subtraction;
      Ada.Text_IO.Put_Line("... Multiplication");        Test_Multiplication;
      Ada.Text_IO.Put_Line("... Multiplication (Full)"); Test_Multiplication_Full;
      Ada.Text_IO.Put_Line("... Division");              Test_Division;
   end Execute;

end Very_Longs.Test;