gnatprove_13.2.1_28fc3583/libexec/spark/lib/gcc/x86_64-pc-linux-gnu/13.2.0/adainclude/s-taprop.adb

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
------------------------------------------------------------------------------
--                                                                          --
--                GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS               --
--                                                                          --
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
--                                                                          --
--                                  B o d y                                 --
--                                                                          --
--         Copyright (C) 1992-2023, Free Software Foundation, Inc.          --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University.       --
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
--                                                                          --
------------------------------------------------------------------------------

--  This is a GNU/Linux (GNU/LinuxThreads) version of this package

--  This package contains all the GNULL primitives that interface directly with
--  the underlying OS.

with Interfaces.C; use Interfaces; use type Interfaces.C.int;

with System.Task_Info;
with System.Tasking.Debug;
with System.Interrupt_Management;
with System.OS_Constants;
with System.OS_Primitives;
with System.Multiprocessors;

with System.Soft_Links;
--  We use System.Soft_Links instead of System.Tasking.Initialization
--  because the later is a higher level package that we shouldn't depend on.
--  For example when using the restricted run time, it is replaced by
--  System.Tasking.Restricted.Stages.

package body System.Task_Primitives.Operations is

   package OSC renames System.OS_Constants;
   package SSL renames System.Soft_Links;

   use System.Tasking.Debug;
   use System.Tasking;
   use System.OS_Interface;
   use System.Parameters;
   use System.OS_Primitives;
   use System.Task_Info;

   ----------------
   -- Local Data --
   ----------------

   --  The followings are logically constants, but need to be initialized
   --  at run time.

   Single_RTS_Lock : aliased RTS_Lock;
   --  This is a lock to allow only one thread of control in the RTS at
   --  a time; it is used to execute in mutual exclusion from all other tasks.
   --  Used to protect All_Tasks_List

   Environment_Task_Id : Task_Id;
   --  A variable to hold Task_Id for the environment task

   Unblocked_Signal_Mask : aliased sigset_t;
   --  The set of signals that should be unblocked in all tasks

   --  The followings are internal configuration constants needed

   Next_Serial_Number : Task_Serial_Number := 100;
   --  We start at 100 (reserve some special values for using in error checks)

   Time_Slice_Val : constant Integer;
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");

   Dispatching_Policy : constant Character;
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");

   Locking_Policy : constant Character;
   pragma Import (C, Locking_Policy, "__gl_locking_policy");

   Foreign_Task_Elaborated : aliased Boolean := True;
   --  Used to identified fake tasks (i.e., non-Ada Threads)

   Use_Alternate_Stack : Boolean := Alternate_Stack_Size /= 0;
   --  Whether to use an alternate signal stack for stack overflows

   Abort_Handler_Installed : Boolean := False;
   --  True if a handler for the abort signal is installed

   Null_Thread_Id : constant pthread_t := pthread_t'Last;
   --  Constant to indicate that the thread identifier has not yet been
   --  initialized.

   --------------------
   -- Local Packages --
   --------------------

   package Specific is

      procedure Initialize (Environment_Task : Task_Id);
      pragma Inline (Initialize);
      --  Initialize various data needed by this package

      function Is_Valid_Task return Boolean;
      pragma Inline (Is_Valid_Task);
      --  Does executing thread have a TCB?

      procedure Set (Self_Id : Task_Id);
      pragma Inline (Set);
      --  Set the self id for the current task

      function Self return Task_Id;
      pragma Inline (Self);
      --  Return a pointer to the Ada Task Control Block of the calling task

   end Specific;

   package body Specific is separate;
   --  The body of this package is target specific

   package Monotonic is

      function Monotonic_Clock return Duration;
      pragma Inline (Monotonic_Clock);
      --  Returns an absolute time, represented as an offset relative to some
      --  unspecified starting point, typically system boot time. This clock is
      --  not affected by discontinuous jumps in the system time.

      function RT_Resolution return Duration;
      pragma Inline (RT_Resolution);
      --  Returns resolution of the underlying clock used to implement RT_Clock

      procedure Timed_Sleep
        (Self_ID  : ST.Task_Id;
         Time     : Duration;
         Mode     : ST.Delay_Modes;
         Reason   : System.Tasking.Task_States;
         Timedout : out Boolean;
         Yielded  : out Boolean);
      --  Combination of Sleep (above) and Timed_Delay

      procedure Timed_Delay
        (Self_ID : ST.Task_Id;
         Time    : Duration;
         Mode    : ST.Delay_Modes);
      --  Implement the semantics of the delay statement.
      --  The caller should be abort-deferred and should not hold any locks.

   end Monotonic;

   package body Monotonic is separate;

   ----------------------------------
   -- ATCB allocation/deallocation --
   ----------------------------------

   package body ATCB_Allocation is separate;
   --  The body of this package is shared across several targets

   ---------------------------------
   -- Support for foreign threads --
   ---------------------------------

   function Register_Foreign_Thread
     (Thread         : Thread_Id;
      Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
   --  Allocate and initialize a new ATCB for the current Thread. The size of
   --  the secondary stack can be optionally specified.

   function Register_Foreign_Thread
     (Thread         : Thread_Id;
      Sec_Stack_Size : Size_Type := Unspecified_Size)
     return Task_Id is separate;

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Abort_Handler (signo : Signal);

   function GNAT_pthread_condattr_setup
     (attr : access pthread_condattr_t) return C.int;
   pragma Import
     (C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");

   function GNAT_has_cap_sys_nice return C.int;
   pragma Import
     (C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice");
   --  We do not have pragma Linker_Options ("-lcap"); here, because this
   --  library is not present on many Linux systems. 'libcap' is the Linux
   --  "capabilities" library, called by __gnat_has_cap_sys_nice.

   function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is
     (C.int (Prio) + 1);
   --  Convert Ada priority to Linux priority. Priorities are 1 .. 99 on
   --  GNU/Linux, so we map 0 .. 98 to 1 .. 99.

   function Get_Ceiling_Support return Boolean;
   --  Get the value of the Ceiling_Support constant (see below).
   --  Note well: If this function or related code is modified, it should be
   --  tested by hand, because automated testing doesn't exercise it.

   -------------------------
   -- Get_Ceiling_Support --
   -------------------------

   function Get_Ceiling_Support return Boolean is
      Ceiling_Support : Boolean := False;
   begin
      if Locking_Policy /= 'C' then
         return False;
      end if;

      declare
         function geteuid return Integer;
         pragma Import (C, geteuid, "geteuid");
         Superuser : constant Boolean := geteuid = 0;
         Has_Cap : constant C.int := GNAT_has_cap_sys_nice;
         pragma Assert (Has_Cap in 0 | 1);
      begin
         Ceiling_Support := Superuser or else Has_Cap = 1;
      end;

      return Ceiling_Support;
   end Get_Ceiling_Support;

   pragma Warnings (Off, "non-preelaborable call not allowed*");
   Ceiling_Support : constant Boolean := Get_Ceiling_Support;
   pragma Warnings (On, "non-preelaborable call not allowed*");
   --  True if the locking policy is Ceiling_Locking, and the current process
   --  has permission to use this policy. The process has permission if it is
   --  running as 'root', or if the capability was set by the setcap command,
   --  as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have
   --  permission, then a request for Ceiling_Locking is ignored.

   type RTS_Lock_Ptr is not null access all RTS_Lock;

   function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int;
   --  Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
   --  to Prio. Returns 0 for success, or ENOMEM for out-of-memory.

   -------------------
   -- Abort_Handler --
   -------------------

   procedure Abort_Handler (signo : Signal) is
      pragma Unreferenced (signo);

      Self_Id : constant Task_Id := Self;
      Result  : C.int;
      Old_Set : aliased sigset_t;

   begin
      --  It's not safe to raise an exception when using GCC ZCX mechanism.
      --  Note that we still need to install a signal handler, since in some
      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
      --  need to send the Abort signal to a task.

      if ZCX_By_Default then
         return;
      end if;

      if Self_Id.Deferral_Level = 0
        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
        and then not Self_Id.Aborting
      then
         Self_Id.Aborting := True;

         --  Make sure signals used for RTS internal purpose are unmasked

         Result :=
           pthread_sigmask
             (SIG_UNBLOCK,
              Unblocked_Signal_Mask'Access,
              Old_Set'Access);
         pragma Assert (Result = 0);

         raise Standard'Abort_Signal;
      end if;
   end Abort_Handler;

   --------------
   -- Lock_RTS --
   --------------

   procedure Lock_RTS is
   begin
      Write_Lock (Single_RTS_Lock'Access);
   end Lock_RTS;

   ----------------
   -- Unlock_RTS --
   ----------------

   procedure Unlock_RTS is
   begin
      Unlock (Single_RTS_Lock'Access);
   end Unlock_RTS;

   -----------------
   -- Stack_Guard --
   -----------------

   --  The underlying thread system extends the memory (up to 2MB) when needed

   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
      pragma Unreferenced (T);
      pragma Unreferenced (On);
   begin
      null;
   end Stack_Guard;

   --------------------
   -- Get_Thread_Id  --
   --------------------

   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
   begin
      return T.Common.LL.Thread;
   end Get_Thread_Id;

   ----------
   -- Self --
   ----------

   function Self return Task_Id renames Specific.Self;

   ----------------
   -- Init_Mutex --
   ----------------

   function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is
      Mutex_Attr : aliased pthread_mutexattr_t;
      Result, Result_2 : C.int;

   begin
      Result := pthread_mutexattr_init (Mutex_Attr'Access);
      pragma Assert (Result in 0 | ENOMEM);

      if Result = ENOMEM then
         return Result;
      end if;

      if Ceiling_Support then
         Result := pthread_mutexattr_setprotocol
           (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
         pragma Assert (Result = 0);

         Result := pthread_mutexattr_setprioceiling
           (Mutex_Attr'Access, Prio_To_Linux_Prio (Prio));
         pragma Assert (Result = 0);

      elsif Locking_Policy = 'I' then
         Result := pthread_mutexattr_setprotocol
           (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
         pragma Assert (Result = 0);
      end if;

      Result := pthread_mutex_init (L, Mutex_Attr'Access);
      pragma Assert (Result in 0 | ENOMEM);

      Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access);
      pragma Assert (Result_2 = 0);
      return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy
   end Init_Mutex;

   ---------------------
   -- Initialize_Lock --
   ---------------------

   --  Note: mutexes and cond_variables needed per-task basis are initialized
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
   --  status change of RTS. Therefore raising Storage_Error in the following
   --  routines should be able to be handled safely.

   procedure Initialize_Lock
     (Prio : Any_Priority;
      L    : not null access Lock)
   is
   begin
      if Locking_Policy = 'R' then
         declare
            RWlock_Attr : aliased pthread_rwlockattr_t;
            Result      : C.int;

         begin
            --  Set the rwlock to prefer writer to avoid writers starvation

            Result := pthread_rwlockattr_init (RWlock_Attr'Access);
            pragma Assert (Result = 0);

            Result := pthread_rwlockattr_setkind_np
              (RWlock_Attr'Access,
               PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
            pragma Assert (Result = 0);

            Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);

            pragma Assert (Result in 0 | ENOMEM);

            if Result = ENOMEM then
               raise Storage_Error with "Failed to allocate a lock";
            end if;
         end;

      else
         if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
            raise Storage_Error with "Failed to allocate a lock";
         end if;
      end if;
   end Initialize_Lock;

   procedure Initialize_Lock
     (L : not null access RTS_Lock; Level : Lock_Level)
   is
      pragma Unreferenced (Level);
   begin
      if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
         raise Storage_Error with "Failed to allocate a lock";
      end if;
   end Initialize_Lock;

   -------------------
   -- Finalize_Lock --
   -------------------

   procedure Finalize_Lock (L : not null access Lock) is
      Result : C.int;
   begin
      if Locking_Policy = 'R' then
         Result := pthread_rwlock_destroy (L.RW'Access);
      else
         Result := pthread_mutex_destroy (L.WO'Access);
      end if;
      pragma Assert (Result = 0);
   end Finalize_Lock;

   procedure Finalize_Lock (L : not null access RTS_Lock) is
      Result : C.int;
   begin
      Result := pthread_mutex_destroy (L);
      pragma Assert (Result = 0);
   end Finalize_Lock;

   ----------------
   -- Write_Lock --
   ----------------

   procedure Write_Lock
     (L                 : not null access Lock;
      Ceiling_Violation : out Boolean)
   is
      Result : C.int;
   begin
      if Locking_Policy = 'R' then
         Result := pthread_rwlock_wrlock (L.RW'Access);
      else
         Result := pthread_mutex_lock (L.WO'Access);
      end if;

      --  The cause of EINVAL is a priority ceiling violation

      pragma Assert (Result in 0 | EINVAL);
      Ceiling_Violation := Result = EINVAL;
   end Write_Lock;

   procedure Write_Lock (L : not null access RTS_Lock) is
      Result : C.int;
   begin
      Result := pthread_mutex_lock (L);
      pragma Assert (Result = 0);
   end Write_Lock;

   procedure Write_Lock (T : Task_Id) is
      Result : C.int;
   begin
      Result := pthread_mutex_lock (T.Common.LL.L'Access);
      pragma Assert (Result = 0);
   end Write_Lock;

   ---------------
   -- Read_Lock --
   ---------------

   procedure Read_Lock
     (L                 : not null access Lock;
      Ceiling_Violation : out Boolean)
   is
      Result : C.int;
   begin
      if Locking_Policy = 'R' then
         Result := pthread_rwlock_rdlock (L.RW'Access);
      else
         Result := pthread_mutex_lock (L.WO'Access);
      end if;

      --  The cause of EINVAL is a priority ceiling violation

      pragma Assert (Result in 0 | EINVAL);
      Ceiling_Violation := Result = EINVAL;
   end Read_Lock;

   ------------
   -- Unlock --
   ------------

   procedure Unlock (L : not null access Lock) is
      Result : C.int;
   begin
      if Locking_Policy = 'R' then
         Result := pthread_rwlock_unlock (L.RW'Access);
      else
         Result := pthread_mutex_unlock (L.WO'Access);
      end if;
      pragma Assert (Result = 0);
   end Unlock;

   procedure Unlock (L : not null access RTS_Lock) is
      Result : C.int;
   begin
      Result := pthread_mutex_unlock (L);
      pragma Assert (Result = 0);
   end Unlock;

   procedure Unlock (T : Task_Id) is
      Result : C.int;
   begin
      Result := pthread_mutex_unlock (T.Common.LL.L'Access);
      pragma Assert (Result = 0);
   end Unlock;

   -----------------
   -- Set_Ceiling --
   -----------------

   --  Dynamic priority ceilings are not supported by the underlying system

   procedure Set_Ceiling
     (L    : not null access Lock;
      Prio : Any_Priority)
   is
      pragma Unreferenced (L, Prio);
   begin
      null;
   end Set_Ceiling;

   -----------
   -- Sleep --
   -----------

   procedure Sleep
     (Self_ID  : Task_Id;
      Reason   : System.Tasking.Task_States)
   is
      pragma Unreferenced (Reason);

      Result : C.int;

   begin
      pragma Assert (Self_ID = Self);

      Result :=
        pthread_cond_wait
          (cond  => Self_ID.Common.LL.CV'Access,
           mutex => Self_ID.Common.LL.L'Access);

      --  EINTR is not considered a failure

      pragma Assert (Result in 0 | EINTR);
   end Sleep;

   -----------------
   -- Timed_Sleep --
   -----------------

   --  This is for use within the run-time system, so abort is
   --  assumed to be already deferred, and the caller should be
   --  holding its own ATCB lock.

   procedure Timed_Sleep
     (Self_ID  : Task_Id;
      Time     : Duration;
      Mode     : ST.Delay_Modes;
      Reason   : System.Tasking.Task_States;
      Timedout : out Boolean;
      Yielded  : out Boolean) renames Monotonic.Timed_Sleep;

   -----------------
   -- Timed_Delay --
   -----------------

   --  This is for use in implementing delay statements, so we assume the
   --  caller is abort-deferred but is holding no locks.

   procedure Timed_Delay
     (Self_ID : Task_Id;
      Time    : Duration;
      Mode    : ST.Delay_Modes) renames Monotonic.Timed_Delay;

   ---------------------
   -- Monotonic_Clock --
   ---------------------

   function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock;

   -------------------
   -- RT_Resolution --
   -------------------

   function RT_Resolution return Duration renames Monotonic.RT_Resolution;

   ------------
   -- Wakeup --
   ------------

   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
      pragma Unreferenced (Reason);
      Result : C.int;
   begin
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);
   end Wakeup;

   -----------
   -- Yield --
   -----------

   procedure Yield (Do_Yield : Boolean := True) is
      Result : C.int;
      pragma Unreferenced (Result);
   begin
      if Do_Yield then
         Result := sched_yield;
      end if;
   end Yield;

   ------------------
   -- Set_Priority --
   ------------------

   procedure Set_Priority
     (T                   : Task_Id;
      Prio                : Any_Priority;
      Loss_Of_Inheritance : Boolean := False)
   is
      pragma Unreferenced (Loss_Of_Inheritance);

      Result : C.int;
      Param  : aliased struct_sched_param;

      function Get_Policy (Prio : Any_Priority) return Character;
      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
      --  Get priority specific dispatching policy

      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
      --  Upper case first character of the policy name corresponding to the
      --  task as set by a Priority_Specific_Dispatching pragma.

   begin
      T.Common.Current_Priority := Prio;

      Param.sched_priority := Prio_To_Linux_Prio (Prio);

      if Dispatching_Policy = 'R'
        or else Priority_Specific_Policy = 'R'
        or else Time_Slice_Val > 0
      then
         Result :=
           pthread_setschedparam
             (T.Common.LL.Thread, SCHED_RR, Param'Access);

      elsif Dispatching_Policy = 'F'
        or else Priority_Specific_Policy = 'F'
        or else Time_Slice_Val = 0
      then
         Result :=
           pthread_setschedparam
             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);

      else
         Param.sched_priority := 0;
         Result :=
           pthread_setschedparam
             (T.Common.LL.Thread,
              SCHED_OTHER, Param'Access);
      end if;

      pragma Assert (Result in 0 | EPERM | EINVAL);
   end Set_Priority;

   ------------------
   -- Get_Priority --
   ------------------

   function Get_Priority (T : Task_Id) return Any_Priority is
   begin
      return T.Common.Current_Priority;
   end Get_Priority;

   ----------------
   -- Enter_Task --
   ----------------

   procedure Enter_Task (Self_ID : Task_Id) is
   begin
      if Self_ID.Common.Task_Info /= null
        and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
      then
         raise Invalid_CPU_Number;
      end if;

      Self_ID.Common.LL.Thread := pthread_self;
      Self_ID.Common.LL.LWP := lwp_self;

      --  Set thread name to ease debugging. If the name of the task is
      --  "foreign thread" (as set by Register_Foreign_Thread) retrieve
      --  the name of the thread and update the name of the task instead.

      if Self_ID.Common.Task_Image_Len = 14
        and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread"
      then
         declare
            Thread_Name : String (1 .. 16);
            --  PR_GET_NAME returns a string of up to 16 bytes

            Len    : Natural := 0;
            --  Length of the task name contained in Task_Name

            Result : C.int;
            --  Result from the prctl call
         begin
            Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address));
            pragma Assert (Result = 0);

            --  Find the length of the given name

            for J in Thread_Name'Range loop
               if Thread_Name (J) /= ASCII.NUL then
                  Len := Len + 1;
               else
                  exit;
               end if;
            end loop;

            --  Cover the odd situation where someone decides to change
            --  Parameters.Max_Task_Image_Length to less than 16 characters.

            if Len > Parameters.Max_Task_Image_Length then
               Len := Parameters.Max_Task_Image_Length;
            end if;

            --  Copy the name of the thread to the task's ATCB

            Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len);
            Self_ID.Common.Task_Image_Len := Len;
         end;

      elsif Self_ID.Common.Task_Image_Len > 0 then
         declare
            Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
            Result    : C.int;

         begin
            Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
              Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
            Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;

            Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
            pragma Assert (Result = 0);
         end;
      end if;

      Specific.Set (Self_ID);

      if Use_Alternate_Stack
        and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
      then
         declare
            Stack  : aliased stack_t;
            Result : C.int;
         begin
            Stack.ss_sp    := Self_ID.Common.Task_Alternate_Stack;
            Stack.ss_size  := Alternate_Stack_Size;
            Stack.ss_flags := 0;
            Result := sigaltstack (Stack'Access, null);
            pragma Assert (Result = 0);
         end;
      end if;
   end Enter_Task;

   -------------------
   -- Is_Valid_Task --
   -------------------

   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;

   -----------------------------
   -- Register_Foreign_Thread --
   -----------------------------

   function Register_Foreign_Thread return Task_Id is
   begin
      if Is_Valid_Task then
         return Self;
      else
         return Register_Foreign_Thread (pthread_self);
      end if;
   end Register_Foreign_Thread;

   --------------------
   -- Initialize_TCB --
   --------------------

   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
      Result    : C.int;
      Cond_Attr : aliased pthread_condattr_t;

   begin
      --  Give the task a unique serial number

      Self_ID.Serial_Number := Next_Serial_Number;
      Next_Serial_Number := Next_Serial_Number + 1;
      pragma Assert (Next_Serial_Number /= 0);

      Self_ID.Common.LL.Thread := Null_Thread_Id;

      if Init_Mutex (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0 then
         Succeeded := False;
         return;
      end if;

      Result := pthread_condattr_init (Cond_Attr'Access);
      pragma Assert (Result in 0 | ENOMEM);

      if Result = 0 then
         Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
         pragma Assert (Result = 0);

         Result :=
           pthread_cond_init
             (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
         pragma Assert (Result in 0 | ENOMEM);
      end if;

      if Result = 0 then
         Succeeded := True;
      else
         Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
         pragma Assert (Result = 0);

         Succeeded := False;
      end if;

      Result := pthread_condattr_destroy (Cond_Attr'Access);
      pragma Assert (Result = 0);
   end Initialize_TCB;

   -----------------
   -- Create_Task --
   -----------------

   procedure Create_Task
     (T          : Task_Id;
      Wrapper    : System.Address;
      Stack_Size : System.Parameters.Size_Type;
      Priority   : Any_Priority;
      Succeeded  : out Boolean)
   is
      Thread_Attr         : aliased pthread_attr_t;
      Adjusted_Stack_Size : C.size_t;
      Result              : C.int;

      use type Multiprocessors.CPU_Range, Interfaces.C.size_t;

   begin
      --  Check whether both Dispatching_Domain and CPU are specified for
      --  the task, and the CPU value is not contained within the range of
      --  processors for the domain.

      if T.Common.Domain /= null
        and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU
        and then
          (T.Common.Base_CPU not in T.Common.Domain'Range
            or else not T.Common.Domain (T.Common.Base_CPU))
      then
         Succeeded := False;
         return;
      end if;

      Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size);

      Result := pthread_attr_init (Thread_Attr'Access);
      pragma Assert (Result in 0 | ENOMEM);

      if Result /= 0 then
         Succeeded := False;
         return;
      end if;

      Result :=
        pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size);
      pragma Assert (Result = 0);

      Result :=
        pthread_attr_setdetachstate
          (Thread_Attr'Access, PTHREAD_CREATE_DETACHED);
      pragma Assert (Result = 0);

      --  Set the required attributes for the creation of the thread

      --  Note: Previously, we called pthread_setaffinity_np (after thread
      --  creation but before thread activation) to set the affinity but it was
      --  not behaving as expected. Setting the required attributes for the
      --  creation of the thread works correctly and it is more appropriate.

      --  Do nothing if required support not provided by the operating system

      if pthread_attr_setaffinity_np'Address = Null_Address then
         null;

      --  Support is available

      elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
         declare
            CPUs    : constant size_t :=
                        C.size_t (Multiprocessors.Number_Of_CPUs);
            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);

         begin
            CPU_ZERO (Size, CPU_Set);
            System.OS_Interface.CPU_SET
              (int (T.Common.Base_CPU), Size, CPU_Set);
            Result :=
              pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
            pragma Assert (Result = 0);

            CPU_FREE (CPU_Set);
         end;

      --  Handle Task_Info

      elsif T.Common.Task_Info /= null then
         Result :=
           pthread_attr_setaffinity_np
             (Thread_Attr'Access,
              CPU_SETSIZE / 8,
              T.Common.Task_Info.CPU_Affinity'Access);
         pragma Assert (Result = 0);

      --  Handle dispatching domains

      --  To avoid changing CPU affinities when not needed, we set the
      --  affinity only when assigning to a domain other than the default
      --  one, or when the default one has been modified.

      elsif T.Common.Domain /= null and then
        (T.Common.Domain /= ST.System_Domain
          or else T.Common.Domain.all /=
                    [Multiprocessors.CPU'First ..
                     Multiprocessors.Number_Of_CPUs => True])
      then
         declare
            CPUs    : constant size_t :=
                        C.size_t (Multiprocessors.Number_Of_CPUs);
            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);

         begin
            CPU_ZERO (Size, CPU_Set);

            --  Set the affinity to all the processors belonging to the
            --  dispatching domain.

            for Proc in T.Common.Domain'Range loop
               if T.Common.Domain (Proc) then
                  System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
               end if;
            end loop;

            Result :=
              pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
            pragma Assert (Result = 0);

            CPU_FREE (CPU_Set);
         end;
      end if;

      --  Since the initial signal mask of a thread is inherited from the
      --  creator, and the Environment task has all its signals masked, we
      --  do not need to manipulate caller's signal mask at this point.
      --  All tasks in RTS will have All_Tasks_Mask initially.

      --  Note: the use of Unrestricted_Access in the following call is needed
      --  because otherwise we have an error of getting a access-to-volatile
      --  value which points to a non-volatile object. But in this case it is
      --  safe to do this, since we know we have no problems with aliasing and
      --  Unrestricted_Access bypasses this check.

      Result := pthread_create
        (T.Common.LL.Thread'Unrestricted_Access,
         Thread_Attr'Access,
         Thread_Body_Access (Wrapper),
         To_Address (T));

      pragma Assert (Result in 0 | EAGAIN | ENOMEM);

      if Result /= 0 then
         Succeeded := False;
         Result := pthread_attr_destroy (Thread_Attr'Access);
         pragma Assert (Result = 0);
         return;
      end if;

      Succeeded := True;

      Result := pthread_attr_destroy (Thread_Attr'Access);
      pragma Assert (Result = 0);

      Set_Priority (T, Priority);
   end Create_Task;

   ------------------
   -- Finalize_TCB --
   ------------------

   procedure Finalize_TCB (T : Task_Id) is
      Result : C.int;

   begin
      Result := pthread_mutex_destroy (T.Common.LL.L'Access);
      pragma Assert (Result = 0);

      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
      pragma Assert (Result = 0);

      if T.Known_Tasks_Index /= -1 then
         Known_Tasks (T.Known_Tasks_Index) := null;
      end if;

      ATCB_Allocation.Free_ATCB (T);
   end Finalize_TCB;

   ---------------
   -- Exit_Task --
   ---------------

   procedure Exit_Task is
   begin
      Specific.Set (null);
   end Exit_Task;

   ----------------
   -- Abort_Task --
   ----------------

   procedure Abort_Task (T : Task_Id) is
      Result : C.int;

      ESRCH : constant := 3; -- No such process
      --  It can happen that T has already vanished, in which case pthread_kill
      --  returns ESRCH, so we don't consider that to be an error.

   begin
      if Abort_Handler_Installed then
         Result :=
           pthread_kill
             (T.Common.LL.Thread,
              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
         pragma Assert (Result in 0 | ESRCH);
      end if;
   end Abort_Task;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize (S : in out Suspension_Object) is
      Result : C.int;

   begin
      --  Initialize internal state (always to False (RM D.10(6)))

      S.State := False;
      S.Waiting := False;

      --  Initialize internal mutex

      Result := pthread_mutex_init (S.L'Access, null);

      pragma Assert (Result in 0 | ENOMEM);

      if Result = ENOMEM then
         raise Storage_Error;
      end if;

      --  Initialize internal condition variable

      Result := pthread_cond_init (S.CV'Access, null);

      pragma Assert (Result in 0 | ENOMEM);

      if Result /= 0 then
         Result := pthread_mutex_destroy (S.L'Access);
         pragma Assert (Result = 0);

         if Result = ENOMEM then
            raise Storage_Error;
         end if;
      end if;
   end Initialize;

   --------------
   -- Finalize --
   --------------

   procedure Finalize (S : in out Suspension_Object) is
      Result : C.int;

   begin
      --  Destroy internal mutex

      Result := pthread_mutex_destroy (S.L'Access);
      pragma Assert (Result = 0);

      --  Destroy internal condition variable

      Result := pthread_cond_destroy (S.CV'Access);
      pragma Assert (Result = 0);
   end Finalize;

   -------------------
   -- Current_State --
   -------------------

   function Current_State (S : Suspension_Object) return Boolean is
   begin
      --  We do not want to use lock on this read operation. State is marked
      --  as Atomic so that we ensure that the value retrieved is correct.

      return S.State;
   end Current_State;

   ---------------
   -- Set_False --
   ---------------

   procedure Set_False (S : in out Suspension_Object) is
      Result : C.int;

   begin
      SSL.Abort_Defer.all;

      Result := pthread_mutex_lock (S.L'Access);
      pragma Assert (Result = 0);

      S.State := False;

      Result := pthread_mutex_unlock (S.L'Access);
      pragma Assert (Result = 0);

      SSL.Abort_Undefer.all;
   end Set_False;

   --------------
   -- Set_True --
   --------------

   procedure Set_True (S : in out Suspension_Object) is
      Result : C.int;

   begin
      SSL.Abort_Defer.all;

      Result := pthread_mutex_lock (S.L'Access);
      pragma Assert (Result = 0);

      --  If there is already a task waiting on this suspension object then
      --  we resume it, leaving the state of the suspension object to False,
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
      --  the state to True.

      if S.Waiting then
         S.Waiting := False;
         S.State := False;

         Result := pthread_cond_signal (S.CV'Access);
         pragma Assert (Result = 0);

      else
         S.State := True;
      end if;

      Result := pthread_mutex_unlock (S.L'Access);
      pragma Assert (Result = 0);

      SSL.Abort_Undefer.all;
   end Set_True;

   ------------------------
   -- Suspend_Until_True --
   ------------------------

   procedure Suspend_Until_True (S : in out Suspension_Object) is
      Result : C.int;

   begin
      SSL.Abort_Defer.all;

      Result := pthread_mutex_lock (S.L'Access);
      pragma Assert (Result = 0);

      if S.Waiting then

         --  Program_Error must be raised upon calling Suspend_Until_True
         --  if another task is already waiting on that suspension object
         --  (RM D.10(10)).

         Result := pthread_mutex_unlock (S.L'Access);
         pragma Assert (Result = 0);

         SSL.Abort_Undefer.all;

         raise Program_Error;

      else
         --  Suspend the task if the state is False. Otherwise, the task
         --  continues its execution, and the state of the suspension object
         --  is set to False (ARM D.10 par. 9).

         if S.State then
            S.State := False;
         else
            S.Waiting := True;

            loop
               --  Loop in case pthread_cond_wait returns earlier than expected
               --  (e.g. in case of EINTR caused by a signal). This should not
               --  happen with the current Linux implementation of pthread, but
               --  POSIX does not guarantee it so this may change in future.

               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
               pragma Assert (Result in 0 | EINTR);

               exit when not S.Waiting;
            end loop;
         end if;

         Result := pthread_mutex_unlock (S.L'Access);
         pragma Assert (Result = 0);

         SSL.Abort_Undefer.all;
      end if;
   end Suspend_Until_True;

   ----------------
   -- Check_Exit --
   ----------------

   --  Dummy version

   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
      pragma Unreferenced (Self_ID);
   begin
      return True;
   end Check_Exit;

   --------------------
   -- Check_No_Locks --
   --------------------

   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
      pragma Unreferenced (Self_ID);
   begin
      return True;
   end Check_No_Locks;

   ----------------------
   -- Environment_Task --
   ----------------------

   function Environment_Task return Task_Id is
   begin
      return Environment_Task_Id;
   end Environment_Task;

   ------------------
   -- Suspend_Task --
   ------------------

   function Suspend_Task
     (T           : ST.Task_Id;
      Thread_Self : Thread_Id) return Boolean
   is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
      else
         return True;
      end if;
   end Suspend_Task;

   -----------------
   -- Resume_Task --
   -----------------

   function Resume_Task
     (T           : ST.Task_Id;
      Thread_Self : Thread_Id) return Boolean
   is
   begin
      if T.Common.LL.Thread /= Thread_Self then
         return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
      else
         return True;
      end if;
   end Resume_Task;

   --------------------
   -- Stop_All_Tasks --
   --------------------

   procedure Stop_All_Tasks is
   begin
      null;
   end Stop_All_Tasks;

   ---------------
   -- Stop_Task --
   ---------------

   function Stop_Task (T : ST.Task_Id) return Boolean is
      pragma Unreferenced (T);
   begin
      return False;
   end Stop_Task;

   -------------------
   -- Continue_Task --
   -------------------

   function Continue_Task (T : ST.Task_Id) return Boolean is
      pragma Unreferenced (T);
   begin
      return False;
   end Continue_Task;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize (Environment_Task : Task_Id) is
      act     : aliased struct_sigaction;
      old_act : aliased struct_sigaction;
      Tmp_Set : aliased sigset_t;
      Result  : C.int;
      --  Whether to use an alternate signal stack for stack overflows

      function State
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
      pragma Import (C, State, "__gnat_get_interrupt_state");
      --  Get interrupt state. Defined in init.c.
      --  The input argument is the interrupt number, and the result is one of
      --  the following:

      Default : constant Character := 's';
      --    'n'   this interrupt not set by any Interrupt_State pragma
      --    'u'   Interrupt_State pragma set state to User
      --    'r'   Interrupt_State pragma set state to Runtime
      --    's'   Interrupt_State pragma set state to System (use "default"
      --           system handler)

   begin
      Environment_Task_Id := Environment_Task;

      Interrupt_Management.Initialize;

      --  Prepare the set of signals that should be unblocked in all tasks

      Result := sigemptyset (Unblocked_Signal_Mask'Access);
      pragma Assert (Result = 0);

      for J in Interrupt_Management.Interrupt_ID loop
         if System.Interrupt_Management.Keep_Unmasked (J) then
            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
            pragma Assert (Result = 0);
         end if;
      end loop;

      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);

      --  Initialize the global RTS lock

      Specific.Initialize (Environment_Task);

      --  Do not use an alternate stack if no handler for SEGV is installed

      if State (SIGSEGV) = Default then
         Use_Alternate_Stack := False;
      end if;

      if Use_Alternate_Stack then
         Environment_Task.Common.Task_Alternate_Stack :=
           Alternate_Stack'Address;
      end if;

      --  Make environment task known here because it doesn't go through
      --  Activate_Tasks, which does it for all other tasks.

      Known_Tasks (Known_Tasks'First) := Environment_Task;
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;

      Enter_Task (Environment_Task);

      if State
          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
      then
         act.sa_flags := 0;
         act.sa_handler := Abort_Handler'Address;

         Result := sigemptyset (Tmp_Set'Access);
         pragma Assert (Result = 0);
         act.sa_mask := Tmp_Set;

         Result :=
           sigaction
           (Signal (Interrupt_Management.Abort_Task_Interrupt),
            act'Unchecked_Access,
            old_act'Unchecked_Access);
         pragma Assert (Result = 0);
         Abort_Handler_Installed := True;
      end if;

      --  pragma CPU and dispatching domains for the environment task

      Set_Task_Affinity (Environment_Task);
   end Initialize;

   -----------------------
   -- Set_Task_Affinity --
   -----------------------

   procedure Set_Task_Affinity (T : ST.Task_Id) is
      use type Multiprocessors.CPU_Range;

   begin
      --  Do nothing if there is no support for setting affinities or the
      --  underlying thread has not yet been created. If the thread has not
      --  yet been created then the proper affinity will be set during its
      --  creation.

      if pthread_setaffinity_np'Address /= Null_Address
        and then T.Common.LL.Thread /= Null_Thread_Id
      then
         declare
            CPUs    : constant size_t :=
                        C.size_t (Multiprocessors.Number_Of_CPUs);
            CPU_Set : cpu_set_t_ptr := null;
            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);

            Result  : C.int;

         begin
            --  We look at the specific CPU (Base_CPU) first, then at the
            --  Task_Info field, and finally at the assigned dispatching
            --  domain, if any.

            if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then

               --  Set the affinity to an unique CPU

               CPU_Set := CPU_ALLOC (CPUs);
               System.OS_Interface.CPU_ZERO (Size, CPU_Set);
               System.OS_Interface.CPU_SET
                 (int (T.Common.Base_CPU), Size, CPU_Set);

            --  Handle Task_Info

            elsif T.Common.Task_Info /= null then
               CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;

            --  Handle dispatching domains

            elsif T.Common.Domain /= null and then
              (T.Common.Domain /= ST.System_Domain
                or else T.Common.Domain.all /=
                          [Multiprocessors.CPU'First ..
                           Multiprocessors.Number_Of_CPUs => True])
            then
               --  Set the affinity to all the processors belonging to the
               --  dispatching domain. To avoid changing CPU affinities when
               --  not needed, we set the affinity only when assigning to a
               --  domain other than the default one, or when the default one
               --  has been modified.

               CPU_Set := CPU_ALLOC (CPUs);
               System.OS_Interface.CPU_ZERO (Size, CPU_Set);

               for Proc in T.Common.Domain'Range loop
                  if T.Common.Domain (Proc) then
                     System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
                  end if;
               end loop;
            end if;

            --  We set the new affinity if needed. Otherwise, the new task
            --  will inherit its creator's CPU affinity mask (according to
            --  the documentation of pthread_setaffinity_np), which is
            --  consistent with Ada's required semantics.

            if CPU_Set /= null then
               Result :=
                 pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
               pragma Assert (Result = 0);

               CPU_FREE (CPU_Set);
            end if;
         end;
      end if;
   end Set_Task_Affinity;

end System.Task_Primitives.Operations;