------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- A D A . N U M E R I C S . A U X _ G E N E R I C _ F L O A T -- -- -- -- S p e c -- -- (Generic Wrapper) -- -- -- -- Copyright (C) 1992-2023, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- This package provides the basic computational interface for the generic -- elementary functions. -- This version here delegates to interfaces that typically import as -- intrinsics the expected math functions. with Ada.Numerics.Aux_Long_Long_Float; with Ada.Numerics.Aux_Long_Float; with Ada.Numerics.Aux_Float; with Ada.Numerics.Aux_Short_Float; generic type T is digits <>; package Ada.Numerics.Aux_Generic_Float is pragma Pure; package LLF renames Aux_Long_Long_Float; package LF renames Aux_Long_Float; package F renames Aux_Float; package SF renames Aux_Short_Float; function Sin (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Sin (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Sin (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Sin (F.T (X))) else T'Base (SF.Sin (SF.T (X)))); function Cos (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Cos (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Cos (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Cos (F.T (X))) else T'Base (SF.Cos (SF.T (X)))); function Tan (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Tan (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Tan (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Tan (F.T (X))) else T'Base (SF.Tan (SF.T (X)))); function Exp (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Exp (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Exp (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Exp (F.T (X))) else T'Base (SF.Exp (SF.T (X)))); function Sqrt (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Sqrt (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Sqrt (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Sqrt (F.T (X))) else T'Base (SF.Sqrt (SF.T (X)))); function Log (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Log (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Log (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Log (F.T (X))) else T'Base (SF.Log (SF.T (X)))); function Acos (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Acos (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Acos (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Acos (F.T (X))) else T'Base (SF.Acos (SF.T (X)))); function Asin (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Asin (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Asin (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Asin (F.T (X))) else T'Base (SF.Asin (SF.T (X)))); function Atan (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Atan (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Atan (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Atan (F.T (X))) else T'Base (SF.Atan (SF.T (X)))); function Sinh (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Sinh (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Sinh (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Sinh (F.T (X))) else T'Base (SF.Sinh (SF.T (X)))); function Cosh (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Cosh (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Cosh (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Cosh (F.T (X))) else T'Base (SF.Cosh (SF.T (X)))); function Tanh (X : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Tanh (LLF.T (X))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Tanh (LF.T (X))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Tanh (F.T (X))) else T'Base (SF.Tanh (SF.T (X)))); function Pow (X, Y : T'Base) return T'Base is (if T'Base'Digits > LF.T'Digits then T'Base (LLF.Pow (LLF.T (X), LLF.T (Y))) elsif T'Base'Digits > F.T'Digits then T'Base (LF.Pow (LF.T (X), LF.T (Y))) elsif T'Base'Digits > SF.T'Digits then T'Base (F.Pow (F.T (X), F.T (Y))) else T'Base (SF.Pow (SF.T (X), SF.T (Y)))); end Ada.Numerics.Aux_Generic_Float;