gnat_riscv64_elf_13.2.1_938f208c/riscv64-elf/lib/gnat/light-rv32imac/gnat/a-strmap.adb

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                     A D A . S T R I N G S . M A P S                      --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2023, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  Note: parts of this code are derived from the ADAR.CSH public domain
--  Ada 83 versions of the Appendix C string handling packages. The main
--  differences are that we avoid the use of the minimize function which
--  is bit-by-bit or character-by-character and therefore rather slow.
--  Generally for character sets we favor the full 32-byte representation.

--  Assertions, ghost code and loop invariants in this unit are meant for
--  analysis only, not for run-time checking, as it would be too costly
--  otherwise. This is enforced by setting the assertion policy to Ignore.

pragma Assertion_Policy (Assert         => Ignore,
                         Ghost          => Ignore,
                         Loop_Invariant => Ignore);

package body Ada.Strings.Maps
  with SPARK_Mode
is

   ---------
   -- "-" --
   ---------

   function "-" (Left, Right : Character_Set) return Character_Set is
   begin
      return Left and not Right;
   end "-";

   ---------
   -- "=" --
   ---------

   function "=" (Left, Right : Character_Set) return Boolean is
   begin
      return Character_Set_Internal (Left) = Character_Set_Internal (Right);
   end "=";

   -----------
   -- "and" --
   -----------

   function "and" (Left, Right : Character_Set) return Character_Set is
   begin
      return Character_Set
        (Character_Set_Internal (Left) and Character_Set_Internal (Right));
   end "and";

   -----------
   -- "not" --
   -----------

   function "not" (Right : Character_Set) return Character_Set is
   begin
      return Character_Set (not Character_Set_Internal (Right));
   end "not";

   ----------
   -- "or" --
   ----------

   function "or" (Left, Right : Character_Set) return Character_Set is
   begin
      return Character_Set
        (Character_Set_Internal (Left) or Character_Set_Internal (Right));
   end "or";

   -----------
   -- "xor" --
   -----------

   function "xor" (Left, Right : Character_Set) return Character_Set is
   begin
      return Character_Set
        (Character_Set_Internal (Left) xor Character_Set_Internal (Right));
   end "xor";

   -----------
   -- Is_In --
   -----------

   function Is_In
     (Element : Character;
      Set     : Character_Set) return Boolean
   is
      (Set (Element));

   ---------------
   -- Is_Subset --
   ---------------

   function Is_Subset
     (Elements : Character_Set;
      Set      : Character_Set) return Boolean
   is
   begin
      return (Elements and Set) = Elements;
   end Is_Subset;

   ---------------
   -- To_Domain --
   ---------------

   function To_Domain (Map : Character_Mapping) return Character_Sequence is
      Result : String (1 .. Map'Length) with Relaxed_Initialization;
      J      : Natural;

      type Character_Index is array (Character) of Natural with Ghost;
      Indexes : Character_Index := [others => 0] with Ghost;

   begin
      J := 0;
      for C in Map'Range loop
         if Map (C) /= C then
            J := J + 1;
            Result (J) := C;
            Indexes (C) := J;
         end if;

         pragma Loop_Invariant (if Map = Identity then J = 0);
         pragma Loop_Invariant (J <= Character'Pos (C) + 1);
         pragma Loop_Invariant (Result (1 .. J)'Initialized);
         pragma Loop_Invariant (for all K in 1 .. J => Result (K) <= C);
         pragma Loop_Invariant
           (SPARK_Proof_Sorted_Character_Sequence (Result (1 .. J)));
         pragma Loop_Invariant
           (for all D in Map'First .. C =>
              (if Map (D) = D then
                 Indexes (D) = 0
               else
                 Indexes (D) in 1 .. J
                   and then Result (Indexes (D)) = D));
         pragma Loop_Invariant
           (for all Char of Result (1 .. J) => Map (Char) /= Char);
      end loop;

      return Result (1 .. J);
   end To_Domain;

   ----------------
   -- To_Mapping --
   ----------------

   function To_Mapping
     (From, To : Character_Sequence) return Character_Mapping
   is
      Result   : Character_Mapping with Relaxed_Initialization;
      Inserted : Character_Set := Null_Set;
      From_Len : constant Natural := From'Length;
      To_Len   : constant Natural := To'Length;

   begin
      if From_Len /= To_Len then
         raise Strings.Translation_Error;
      end if;

      for Char in Character loop
         Result (Char) := Char;
         pragma Loop_Invariant (Result (Result'First .. Char)'Initialized);
         pragma Loop_Invariant
           (for all C in Result'First .. Char => Result (C) = C);
      end loop;

      for J in From'Range loop
         if Inserted (From (J)) then
            raise Strings.Translation_Error;
         end if;

         Result   (From (J)) := To (J - From'First + To'First);
         Inserted (From (J)) := True;

         pragma Loop_Invariant (Result'Initialized);
         pragma Loop_Invariant
           (for all K in From'First .. J =>
              Result (From (K)) = To (K - From'First + To'First)
                and then Inserted (From (K)));
         pragma Loop_Invariant
           (for all Char in Character =>
              (Inserted (Char) =
                 (for some K in From'First .. J => Char = From (K))));
         pragma Loop_Invariant
           (for all Char in Character =>
              (if not Inserted (Char) then Result (Char) = Char));
         pragma Loop_Invariant
           (if (for all K in From'First .. J =>
                  From (K) = To (J - From'First + To'First))
            then Result = Identity);
      end loop;

      return Result;
   end To_Mapping;

   --------------
   -- To_Range --
   --------------

   function To_Range (Map : Character_Mapping) return Character_Sequence is

      --  Extract from the postcondition of To_Domain the essential properties
      --  that define Seq as the domain of Map.
      function Is_Domain
        (Map : Character_Mapping;
         Seq : Character_Sequence)
         return Boolean
      is
        (Seq'First = 1
           and then
         SPARK_Proof_Sorted_Character_Sequence (Seq)
           and then
         (for all Char in Character =>
            (if (for all X of Seq => X /= Char)
             then Map (Char) = Char))
           and then
         (for all Char of Seq => Map (Char) /= Char))
      with
        Ghost;

      --  Given Map, there is a unique sequence Seq for which
      --  Is_Domain(Map,Seq) holds.
      procedure Lemma_Domain_Unicity
        (Map        : Character_Mapping;
         Seq1, Seq2 : Character_Sequence)
      with
        Ghost,
        Pre  => Is_Domain (Map, Seq1)
          and then Is_Domain (Map, Seq2),
        Post => Seq1 = Seq2;

      --  Isolate the proof that To_Domain(Map) returns a sequence for which
      --  Is_Domain holds.
      procedure Lemma_Is_Domain (Map : Character_Mapping)
      with
        Ghost,
        Post => Is_Domain (Map, To_Domain (Map));

      --  Deduce the alternative expression of sortedness from the one in
      --  SPARK_Proof_Sorted_Character_Sequence which compares consecutive
      --  elements.
      procedure Lemma_Is_Sorted (Seq : Character_Sequence)
      with
        Ghost,
        Pre  => SPARK_Proof_Sorted_Character_Sequence (Seq),
        Post => (for all J in Seq'Range =>
                   (for all K in Seq'Range =>
                      (if J < K then Seq (J) < Seq (K))));

      --------------------------
      -- Lemma_Domain_Unicity --
      --------------------------

      procedure Lemma_Domain_Unicity
        (Map        : Character_Mapping;
         Seq1, Seq2 : Character_Sequence)
      is
         J : Positive := 1;

      begin
         while J <= Seq1'Last
           and then J <= Seq2'Last
           and then Seq1 (J) = Seq2 (J)
         loop
            pragma Loop_Invariant
              (Seq1 (Seq1'First .. J) = Seq2 (Seq2'First .. J));
            pragma Loop_Variant (Increases => J);

            if J = Positive'Last then
               return;
            end if;

            J := J + 1;
         end loop;

         Lemma_Is_Sorted (Seq1);
         Lemma_Is_Sorted (Seq2);

         if J <= Seq1'Last
           and then J <= Seq2'Last
         then
            if Seq1 (J) < Seq2 (J) then
               pragma Assert (for all X of Seq2 => X /= Seq1 (J));
               pragma Assert (Map (Seq1 (J)) = Seq1 (J));
               pragma Assert (False);
            else
               pragma Assert (for all X of Seq1 => X /= Seq2 (J));
               pragma Assert (Map (Seq2 (J)) = Seq2 (J));
               pragma Assert (False);
            end if;

         elsif J <= Seq1'Last then
            pragma Assert (for all X of Seq2 => X /= Seq1 (J));
            pragma Assert (Map (Seq1 (J)) = Seq1 (J));
            pragma Assert (False);

         elsif J <= Seq2'Last then
            pragma Assert (for all X of Seq1 => X /= Seq2 (J));
            pragma Assert (Map (Seq2 (J)) = Seq2 (J));
            pragma Assert (False);
         end if;
      end Lemma_Domain_Unicity;

      ---------------------
      -- Lemma_Is_Domain --
      ---------------------

      procedure Lemma_Is_Domain (Map : Character_Mapping) is
         Ignore : constant Character_Sequence := To_Domain (Map);
      begin
         null;
      end Lemma_Is_Domain;

      ---------------------
      -- Lemma_Is_Sorted --
      ---------------------

      procedure Lemma_Is_Sorted (Seq : Character_Sequence) is
      begin
         for A in Seq'Range loop
            exit when A = Positive'Last;

            for B in A + 1 .. Seq'Last loop
               pragma Loop_Invariant
                 (for all K in A + 1 .. B => Seq (A) < Seq (K));
            end loop;

            pragma Loop_Invariant
              (for all J in Seq'First .. A =>
                 (for all K in Seq'Range =>
                    (if J < K then Seq (J) < Seq (K))));
         end loop;
      end Lemma_Is_Sorted;

      --  Local variables

      Result : String (1 .. Map'Length) with Relaxed_Initialization;
      J      : Natural;

      --  Repeat the computation from To_Domain in ghost code, in order to
      --  prove the relationship between Result and To_Domain(Map).

      Domain : String (1 .. Map'Length) with Ghost, Relaxed_Initialization;
      type Character_Index is array (Character) of Natural with Ghost;
      Indexes : Character_Index := [others => 0] with Ghost;

   --  Start of processing for To_Range

   begin
      J := 0;
      for C in Map'Range loop
         if Map (C) /= C then
            J := J + 1;
            Result (J) := Map (C);
            Domain (J) := C;
            Indexes (C) := J;
         end if;

         --  Repeat the loop invariants from To_Domain regarding Domain and
         --  Indexes. Add similar loop invariants for Result and Indexes.

         pragma Loop_Invariant (J <= Character'Pos (C) + 1);
         pragma Loop_Invariant (Result (1 .. J)'Initialized);
         pragma Loop_Invariant (Domain (1 .. J)'Initialized);
         pragma Loop_Invariant (for all K in 1 .. J => Domain (K) <= C);
         pragma Loop_Invariant
           (SPARK_Proof_Sorted_Character_Sequence (Domain (1 .. J)));
         pragma Loop_Invariant
           (for all D in Map'First .. C =>
              (if Map (D) = D then
                 Indexes (D) = 0
               else
                 Indexes (D) in 1 .. J
                   and then Domain (Indexes (D)) = D
                   and then Result (Indexes (D)) = Map (D)));
         pragma Loop_Invariant
           (for all Char of Domain (1 .. J) => Map (Char) /= Char);
         pragma Loop_Invariant
           (for all K in 1 .. J => Result (K) = Map (Domain (K)));
      end loop;

      --  Show the equality of Domain and To_Domain(Map)

      Lemma_Is_Domain (Map);
      Lemma_Domain_Unicity (Map, Domain (1 .. J), To_Domain (Map));
      pragma Assert
        (for all K in 1 .. J => Domain (K) = To_Domain (Map) (K));
      pragma Assert (To_Domain (Map)'Length = J);

      return Result (1 .. J);
   end To_Range;

   ---------------
   -- To_Ranges --
   ---------------

   function To_Ranges (Set : Character_Set) return Character_Ranges is
      Max_Ranges : Character_Ranges (1 .. Set'Length / 2 + 1)
        with Relaxed_Initialization;
      Range_Num  : Natural;
      C          : Character;
      C_Iter     : Character with Ghost;

   begin
      C := Character'First;
      Range_Num := 0;

      loop
         C_Iter := C;

         --  Skip gap between subsets

         while not Set (C) loop
            pragma Loop_Invariant
              (Character'Pos (C) >= Character'Pos (C'Loop_Entry));
            pragma Loop_Invariant
              (for all Char in C'Loop_Entry .. C => not Set (Char));
            pragma Loop_Variant (Increases => C);
            exit when C = Character'Last;
            C := Character'Succ (C);
         end loop;

         exit when not Set (C);

         Range_Num := Range_Num + 1;
         Max_Ranges (Range_Num).Low := C;

         --  Span a subset

         loop
            pragma Loop_Invariant
              (Character'Pos (C) >= Character'Pos (C'Loop_Entry));
            pragma Loop_Invariant
              (for all Char in C'Loop_Entry .. C =>
                 (if Char /= C then Set (Char)));
            pragma Loop_Variant (Increases => C);
            exit when not Set (C) or else C = Character'Last;
            C := Character'Succ (C);
         end loop;

         if Set (C) then
            Max_Ranges (Range_Num).High := C;
            exit;
         else
            Max_Ranges (Range_Num).High := Character'Pred (C);
         end if;

         pragma Assert
           (for all Char in C_Iter .. C =>
              (Set (Char) =
                 (Char in Max_Ranges (Range_Num).Low ..
                          Max_Ranges (Range_Num).High)));
         pragma Assert
           (for all Char in Character'First .. C_Iter =>
              (if Char /= C_Iter then
                 (Set (Char) =
                    (for some Span of Max_Ranges (1 .. Range_Num - 1) =>
                       Char in Span.Low .. Span.High))));

         pragma Loop_Invariant (2 * Range_Num <= Character'Pos (C) + 1);
         pragma Loop_Invariant (Max_Ranges (1 .. Range_Num)'Initialized);
         pragma Loop_Invariant (not Set (C));
         pragma Loop_Invariant
           (for all Char in Character'First .. C =>
              (Set (Char) =
                 (for some Span of Max_Ranges (1 .. Range_Num) =>
                    Char in Span.Low .. Span.High)));
         pragma Loop_Invariant
           (for all Span of Max_Ranges (1 .. Range_Num) =>
              (for all Char in Span.Low .. Span.High => Set (Char)));
         pragma Loop_Variant (Increases => Range_Num);
      end loop;

      return Max_Ranges (1 .. Range_Num);
   end To_Ranges;

   -----------------
   -- To_Sequence --
   -----------------

   function To_Sequence (Set : Character_Set) return Character_Sequence is
      Result : String (1 .. Character'Pos (Character'Last) + 1)
        with Relaxed_Initialization;
      Count  : Natural := 0;
   begin
      for Char in Set'Range loop
         if Set (Char) then
            Count := Count + 1;
            Result (Count) := Char;
         end if;

         pragma Loop_Invariant (Count <= Character'Pos (Char) + 1);
         pragma Loop_Invariant (Result (1 .. Count)'Initialized);
         pragma Loop_Invariant (for all K in 1 .. Count => Result (K) <= Char);
         pragma Loop_Invariant
           (SPARK_Proof_Sorted_Character_Sequence (Result (1 .. Count)));
         pragma Loop_Invariant
           (for all C in Set'First .. Char =>
              (Set (C) = (for some X of Result (1 .. Count) => C = X)));
         pragma Loop_Invariant
           (for all Char of Result (1 .. Count) => Is_In (Char, Set));
      end loop;

      return Result (1 .. Count);
   end To_Sequence;

   ------------
   -- To_Set --
   ------------

   function To_Set (Ranges : Character_Ranges) return Character_Set is
      Result : Character_Set := Null_Set;
   begin
      for R in Ranges'Range loop
         for C in Ranges (R).Low .. Ranges (R).High loop
            Result (C) := True;
            pragma Loop_Invariant
              (for all Char in Character =>
                 Result (Char) =
                   ((for some Prev in Ranges'First .. R - 1 =>
                       Char in Ranges (Prev).Low .. Ranges (Prev).High)
                    or else Char in Ranges (R).Low .. C));
         end loop;

         pragma Loop_Invariant
           (for all Char in Character =>
              Result (Char) =
                (for some Prev in Ranges'First .. R =>
                   Char in Ranges (Prev).Low .. Ranges (Prev).High));
      end loop;

      return Result;
   end To_Set;

   function To_Set (Span : Character_Range) return Character_Set is
      Result : Character_Set := Null_Set;
   begin
      for C in Span.Low .. Span.High loop
         Result (C) := True;
         pragma Loop_Invariant
           (for all Char in Character =>
              Result (Char) = (Char in Span.Low .. C));
      end loop;

      return Result;
   end To_Set;

   function To_Set (Sequence : Character_Sequence) return Character_Set is
      Result : Character_Set := Null_Set;
   begin
      for J in Sequence'Range loop
         Result (Sequence (J)) := True;
         pragma Loop_Invariant
           (for all Char in Character =>
              Result (Char) =
                (for some K in Sequence'First .. J => Char = Sequence (K)));
      end loop;

      return Result;
   end To_Set;

   function To_Set (Singleton : Character) return Character_Set is
      Result : Character_Set := Null_Set;
   begin
      Result (Singleton) := True;
      return Result;
   end To_Set;

   -----------
   -- Value --
   -----------

   function Value
     (Map     : Character_Mapping;
      Element : Character) return Character
   is
      (Map (Element));

end Ada.Strings.Maps;