gnat_native_13.2.1_788a01f9/lib/gcc/x86_64-pc-linux-gnu/13.2.0/adainclude/s-tassta.adb

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
------------------------------------------------------------------------------
--                                                                          --
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
--                                                                          --
--                 S Y S T E M . T A S K I N G . S T A G E S                --
--                                                                          --
--                                  B o d y                                 --
--                                                                          --
--         Copyright (C) 1992-2023, Free Software Foundation, Inc.          --
--                                                                          --
-- GNARL is free software; you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNARL was developed by the GNARL team at Florida State University.       --
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
--                                                                          --
------------------------------------------------------------------------------

pragma Partition_Elaboration_Policy (Concurrent);
--  This package only implements the concurrent elaboration policy. This pragma
--  will enforce it (and detect conflicts with user specified policy).

with Ada.Exceptions;
with Ada.Unchecked_Deallocation;
with Ada.Task_Initialization;

with System.Interrupt_Management;
with System.Tasking.Debug;
with System.Address_Image;
with System.Task_Primitives;
with System.Task_Primitives.Operations;
with System.Tasking.Utilities;
with System.Tasking.Queuing;
with System.Tasking.Rendezvous;
with System.OS_Primitives;
with System.Secondary_Stack;
with System.Restrictions;
with System.Standard_Library;
with System.Stack_Usage;
with System.Storage_Elements;

with System.Soft_Links;
--  These are procedure pointers to non-tasking routines that use task
--  specific data. In the absence of tasking, these routines refer to global
--  data. In the presence of tasking, they must be replaced with pointers to
--  task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
--  _Excep, Finalize_Library_Objects, Task_Termination, Handler.

with System.Tasking.Initialization;
pragma Elaborate_All (System.Tasking.Initialization);
--  This insures that tasking is initialized if any tasks are created

package body System.Tasking.Stages is

   package STPO renames System.Task_Primitives.Operations;
   package SSL  renames System.Soft_Links;
   package SSE  renames System.Storage_Elements;

   use Ada.Exceptions;

   use Secondary_Stack;
   use Task_Primitives;
   use Task_Primitives.Operations;

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Free is new
     Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);

   procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
   --  This procedure outputs the task specific message for exception
   --  tracing purposes.

   procedure Task_Wrapper (Self_ID : Task_Id);
   pragma Convention (C, Task_Wrapper);
   --  This is the procedure that is called by the GNULL from the new context
   --  when a task is created. It waits for activation and then calls the task
   --  body procedure. When the task body procedure completes, it terminates
   --  the task.
   --
   --  The Task_Wrapper's address will be provided to the underlying threads
   --  library as the task entry point. Convention C is what makes most sense
   --  for that purpose (Export C would make the function globally visible,
   --  and affect the link name on which GDB depends). This will in addition
   --  trigger an automatic stack alignment suitable for GCC's assumptions if
   --  need be.

   --  "Vulnerable_..." in the procedure names below means they must be called
   --  with abort deferred.

   procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
   --  Complete the calling task. This procedure must be called with
   --  abort deferred. It should only be called by Complete_Task and
   --  Finalize_Global_Tasks (for the environment task).

   procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
   --  Complete the current master of the calling task. This procedure
   --  must be called with abort deferred. It should only be called by
   --  Vulnerable_Complete_Task and Complete_Master.

   procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
   --  Signal to Self_ID's activator that Self_ID has completed activation.
   --  This procedure must be called with abort deferred.

   procedure Abort_Dependents (Self_ID : Task_Id);
   --  Abort all the direct dependents of Self at its current master nesting
   --  level, plus all of their dependents, transitively. RTS_Lock should be
   --  locked by the caller.

   procedure Vulnerable_Free_Task (T : Task_Id);
   --  Recover all runtime system storage associated with the task T. This
   --  should only be called after T has terminated and will no longer be
   --  referenced.
   --
   --  For tasks created by an allocator that fails, due to an exception, it is
   --  called from Expunge_Unactivated_Tasks.
   --
   --  Different code is used at master completion, in Terminate_Dependents,
   --  due to a need for tighter synchronization with the master.

   ----------------------
   -- Abort_Dependents --
   ----------------------

   procedure Abort_Dependents (Self_ID : Task_Id) is
      C : Task_Id;
      P : Task_Id;

      --  Each task C will take care of its own dependents, so there is no
      --  need to worry about them here. In fact, it would be wrong to abort
      --  indirect dependents here, because we can't distinguish between
      --  duplicate master ids. For example, suppose we have three nested
      --  task bodies T1,T2,T3. And suppose T1 also calls P which calls Q (and
      --  both P and Q are task masters). Q will have the same master id as
      --  Master_Of_Task of T3. Previous versions of this would abort T3 when
      --  Q calls Complete_Master, which was completely wrong.

   begin
      C := All_Tasks_List;
      while C /= null loop
         P := C.Common.Parent;

         if P = Self_ID then
            if C.Master_Of_Task = Self_ID.Master_Within then
               pragma Debug
                 (Debug.Trace (Self_ID, "Aborting", 'X', C));
               Utilities.Abort_One_Task (Self_ID, C);
               C.Dependents_Aborted := True;
            end if;
         end if;

         C := C.Common.All_Tasks_Link;
      end loop;

      Self_ID.Dependents_Aborted := True;
   end Abort_Dependents;

   -----------------
   -- Abort_Tasks --
   -----------------

   procedure Abort_Tasks (Tasks : Task_List) is
   begin
      Utilities.Abort_Tasks (Tasks);
   end Abort_Tasks;

   --------------------
   -- Activate_Tasks --
   --------------------

   --  Note that locks of activator and activated task are both locked here.
   --  This is necessary because C.Common.State and Self.Common.Wait_Count have
   --  to be synchronized. This is safe from deadlock because the activator is
   --  always created before the activated task. That satisfies our
   --  in-order-of-creation ATCB locking policy.

   --  At one point, we may also lock the parent, if the parent is different
   --  from the activator. That is also consistent with the lock ordering
   --  policy, since the activator cannot be created before the parent.

   --  Since we are holding both the activator's lock, and Task_Wrapper locks
   --  that before it does anything more than initialize the low-level ATCB
   --  components, it should be safe to wait to update the counts until we see
   --  that the thread creation is successful.

   --  If the thread creation fails, we do need to close the entries of the
   --  task. The first phase, of dequeuing calls, only requires locking the
   --  acceptor's ATCB, but the waking up of the callers requires locking the
   --  caller's ATCB. We cannot safely do this while we are holding other
   --  locks. Therefore, the queue-clearing operation is done in a separate
   --  pass over the activation chain.

   procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
      Self_ID        : constant Task_Id := STPO.Self;
      P              : Task_Id;
      C              : Task_Id;
      Next_C, Last_C : Task_Id;
      Activate_Prio  : System.Any_Priority;
      Success        : Boolean;
      All_Elaborated : Boolean := True;

   begin
      --  If pragma Detect_Blocking is active, then we must check whether this
      --  potentially blocking operation is called from a protected action.

      if System.Tasking.Detect_Blocking
        and then Self_ID.Common.Protected_Action_Nesting > 0
      then
         raise Program_Error with "potentially blocking operation";
      end if;

      pragma Debug
        (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));

      Initialization.Defer_Abort_Nestable (Self_ID);

      pragma Assert (Self_ID.Common.Wait_Count = 0);

      --  Lock RTS_Lock, to prevent activated tasks from racing ahead before
      --  we finish activating the chain.

      Lock_RTS;

      --  Check that all task bodies have been elaborated

      C := Chain_Access.T_ID;
      Last_C := null;
      while C /= null loop
         if C.Common.Elaborated /= null
           and then not C.Common.Elaborated.all
         then
            All_Elaborated := False;
         end if;

         --  Reverse the activation chain so that tasks are activated in the
         --  same order they're declared.

         Next_C := C.Common.Activation_Link;
         C.Common.Activation_Link := Last_C;
         Last_C := C;
         C := Next_C;
      end loop;

      Chain_Access.T_ID := Last_C;

      if not All_Elaborated then
         Unlock_RTS;
         Initialization.Undefer_Abort_Nestable (Self_ID);
         raise Program_Error with "Some tasks have not been elaborated";
      end if;

      --  Activate all the tasks in the chain. Creation of the thread of
      --  control was deferred until activation. So create it now.

      C := Chain_Access.T_ID;
      while C /= null loop
         if C.Common.State /= Terminated then
            pragma Assert (C.Common.State = Unactivated);

            P := C.Common.Parent;
            Write_Lock (P);
            Write_Lock (C);

            Activate_Prio :=
              (if C.Common.Base_Priority < Get_Priority (Self_ID)
               then Get_Priority (Self_ID)
               else C.Common.Base_Priority);

            System.Task_Primitives.Operations.Create_Task
              (C, Task_Wrapper'Address,
               Parameters.Size_Type
                 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
               Activate_Prio, Success);

            --  There would be a race between the created task and the creator
            --  to do the following initialization, if we did not have a
            --  Lock/Unlock_RTS pair in the task wrapper to prevent it from
            --  racing ahead.

            if Success then
               C.Common.State := Activating;
               C.Awake_Count := 1;
               C.Alive_Count := 1;
               P.Awake_Count := P.Awake_Count + 1;
               P.Alive_Count := P.Alive_Count + 1;

               if P.Common.State = Master_Completion_Sleep and then
                 C.Master_Of_Task = P.Master_Within
               then
                  pragma Assert (Self_ID /= P);
                  P.Common.Wait_Count := P.Common.Wait_Count + 1;
               end if;

               for J in System.Tasking.Debug.Known_Tasks'Range loop
                  if System.Tasking.Debug.Known_Tasks (J) = null then
                     System.Tasking.Debug.Known_Tasks (J) := C;
                     C.Known_Tasks_Index := J;
                     exit;
                  end if;
               end loop;

               if Global_Task_Debug_Event_Set then
                  Debug.Signal_Debug_Event
                   (Debug.Debug_Event_Activating, C);
               end if;

               C.Common.State := Runnable;

               Unlock (C);
               Unlock (P);

            else
               --  No need to set Awake_Count, State, etc. here since the loop
               --  below will do that for any Unactivated tasks.

               Unlock (C);
               Unlock (P);
               Self_ID.Common.Activation_Failed := True;
            end if;
         end if;

         C := C.Common.Activation_Link;
      end loop;

      Unlock_RTS;

      --  Close the entries of any tasks that failed thread creation, and count
      --  those that have not finished activation.

      Write_Lock (Self_ID);
      Self_ID.Common.State := Activator_Sleep;

      C := Chain_Access.T_ID;
      while C /= null loop
         Write_Lock (C);

         if C.Common.State = Unactivated then
            C.Common.Activator := null;
            C.Common.State := Terminated;
            C.Callable := False;
            Utilities.Cancel_Queued_Entry_Calls (C);

         elsif C.Common.Activator /= null then
            Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
         end if;

         Unlock (C);
         P := C.Common.Activation_Link;
         C.Common.Activation_Link := null;
         C := P;
      end loop;

      --  Wait for the activated tasks to complete activation. It is
      --  unsafe to abort any of these tasks until the count goes to zero.

      loop
         exit when Self_ID.Common.Wait_Count = 0;
         Sleep (Self_ID, Activator_Sleep);
      end loop;

      Self_ID.Common.State := Runnable;
      Unlock (Self_ID);

      --  Remove the tasks from the chain

      Chain_Access.T_ID := null;
      Initialization.Undefer_Abort_Nestable (Self_ID);

      if Self_ID.Common.Activation_Failed then
         Self_ID.Common.Activation_Failed := False;
         raise Tasking_Error with "Failure during activation";
      end if;
   end Activate_Tasks;

   -------------------------
   -- Complete_Activation --
   -------------------------

   procedure Complete_Activation is
      Self_ID : constant Task_Id := STPO.Self;

   begin
      Initialization.Defer_Abort_Nestable (Self_ID);
      Vulnerable_Complete_Activation (Self_ID);
      Initialization.Undefer_Abort_Nestable (Self_ID);

      --  ??? Why do we need to allow for nested deferral here?

   end Complete_Activation;

   ---------------------
   -- Complete_Master --
   ---------------------

   procedure Complete_Master is
      Self_ID : constant Task_Id := STPO.Self;
   begin
      pragma Assert
        (Self_ID.Deferral_Level > 0
          or else not System.Restrictions.Abort_Allowed);
      Vulnerable_Complete_Master (Self_ID);
   end Complete_Master;

   -------------------
   -- Complete_Task --
   -------------------

   --  See comments on Vulnerable_Complete_Task for details

   procedure Complete_Task is
      Self_ID  : constant Task_Id := STPO.Self;

   begin
      pragma Assert
        (Self_ID.Deferral_Level > 0
          or else not System.Restrictions.Abort_Allowed);

      Vulnerable_Complete_Task (Self_ID);

      --  All of our dependents have terminated, never undefer abort again

   end Complete_Task;

   -----------------
   -- Create_Task --
   -----------------

   --  Compiler interface only. Do not call from within the RTS. This must be
   --  called to create a new task.

   procedure Create_Task
     (Priority             : Integer;
      Stack_Size           : System.Parameters.Size_Type;
      Secondary_Stack_Size : System.Parameters.Size_Type;
      Task_Info            : System.Task_Info.Task_Info_Type;
      CPU                  : Integer;
      Relative_Deadline    : Ada.Real_Time.Time_Span;
      Domain               : Dispatching_Domain_Access;
      Num_Entries          : Task_Entry_Index;
      Master               : Master_Level;
      State                : Task_Procedure_Access;
      Discriminants        : System.Address;
      Elaborated           : Access_Boolean;
      Chain                : in out Activation_Chain;
      Task_Image           : String;
      Created_Task         : out Task_Id)
   is
      T, P          : Task_Id;
      Self_ID       : constant Task_Id := STPO.Self;
      Success       : Boolean;
      Base_Priority : System.Any_Priority;
      Len           : Natural;
      Base_CPU      : System.Multiprocessors.CPU_Range;

      use type System.Multiprocessors.CPU_Range;

      pragma Unreferenced (Relative_Deadline);
      --  EDF scheduling is not supported by any of the target platforms so
      --  this parameter is not passed any further.

   begin
      --  If Master is greater than the current master, it means that Master
      --  has already awaited its dependent tasks. This raises Program_Error,
      --  by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.

      if Self_ID.Master_Of_Task /= Foreign_Task_Level
        and then Master > Self_ID.Master_Within
      then
         raise Program_Error with
           "create task after awaiting termination";
      end if;

      --  If pragma Detect_Blocking is active must be checked whether this
      --  potentially blocking operation is called from a protected action.

      if System.Tasking.Detect_Blocking
        and then Self_ID.Common.Protected_Action_Nesting > 0
      then
         raise Program_Error with "potentially blocking operation";
      end if;

      pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));

      Base_Priority :=
        (if Priority = Unspecified_Priority
         then Self_ID.Common.Base_Priority
         else System.Any_Priority (Priority));

      --  Legal values of CPU are the special Unspecified_CPU value which is
      --  inserted by the compiler for tasks without CPU aspect, and those in
      --  the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
      --  the task is defined to have failed, and it becomes a completed task
      --  (RM D.16(14/3)).

      if CPU /= Unspecified_CPU
        and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
                    or else
                  CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
      then
         raise Tasking_Error with "CPU not in range";

      --  Normal CPU affinity

      else
         --  When the application code says nothing about the task affinity
         --  (task without CPU aspect) then the compiler inserts the value
         --  Unspecified_CPU which indicates to the run-time library that
         --  the task will activate and execute on the same processor as its
         --  activating task if the activating task is assigned a processor
         --  (RM D.16(14/3)).

         Base_CPU :=
           (if CPU = Unspecified_CPU
            then Self_ID.Common.Base_CPU
            else System.Multiprocessors.CPU_Range (CPU));
      end if;

      --  Find parent P of new Task, via master level number. Independent
      --  tasks should have Parent = Environment_Task, and all tasks created
      --  by independent tasks are also independent. See, for example,
      --  s-interr.adb, where Interrupt_Manager does "new Server_Task". The
      --  access type is at library level, so the parent of the Server_Task
      --  is Environment_Task.

      P := Self_ID;

      if P.Master_Of_Task <= Independent_Task_Level then
         P := Environment_Task;
      else
         while P /= null and then P.Master_Of_Task >= Master loop
            P := P.Common.Parent;
         end loop;
      end if;

      Initialization.Defer_Abort_Nestable (Self_ID);

      begin
         T := New_ATCB (Num_Entries);
      exception
         when others =>
            Initialization.Undefer_Abort_Nestable (Self_ID);
            raise Storage_Error with "Cannot allocate task";
      end;

      --  RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
      --  point, it is possible that we may be part of a family of tasks that
      --  is being aborted.

      Lock_RTS;
      Write_Lock (Self_ID);

      --  Now, we must check that we have not been aborted. If so, we should
      --  give up on creating this task, and simply return.

      if not Self_ID.Callable then
         pragma Assert (Self_ID.Pending_ATC_Level = Level_Completed_Task);
         pragma Assert (Self_ID.Pending_Action);
         pragma Assert
           (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);

         Unlock (Self_ID);
         Unlock_RTS;
         Initialization.Undefer_Abort_Nestable (Self_ID);

         --  ??? Should never get here

         pragma Assert (Standard.False);
         raise Standard'Abort_Signal;
      end if;

      Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
        Base_Priority, Base_CPU, Domain, Task_Info, Stack_Size, T, Success);

      if not Success then
         Free (T);
         Unlock (Self_ID);
         Unlock_RTS;
         Initialization.Undefer_Abort_Nestable (Self_ID);
         raise Storage_Error with "Failed to initialize task";
      end if;

      if Master = Foreign_Task_Level + 2 then

         --  This should not happen, except when a foreign task creates non
         --  library-level Ada tasks. In this case, we pretend the master is
         --  a regular library level task, otherwise the run-time will get
         --  confused when waiting for these tasks to terminate.

         T.Master_Of_Task := Library_Task_Level;

      else
         T.Master_Of_Task := Master;
      end if;

      T.Master_Within := T.Master_Of_Task + 1;

      for L in T.Entry_Calls'Range loop
         T.Entry_Calls (L).Self := T;
         T.Entry_Calls (L).Level := L;
      end loop;

      if Task_Image'Length = 0 then
         T.Common.Task_Image_Len := 0;
      else
         Len := 1;
         T.Common.Task_Image (1) := Task_Image (Task_Image'First);

         --  Remove unwanted blank space generated by 'Image

         for J in Task_Image'First + 1 .. Task_Image'Last loop
            if Task_Image (J) /= ' '
              or else Task_Image (J - 1) /= '('
            then
               Len := Len + 1;
               T.Common.Task_Image (Len) := Task_Image (J);
               exit when Len = T.Common.Task_Image'Last;
            end if;
         end loop;

         T.Common.Task_Image_Len := Len;
      end if;

      --  Note: we used to have code here to initialize T.Common.Domain, but
      --  that is not needed, since this is initialized in System.Tasking.

      Unlock (Self_ID);
      Unlock_RTS;

      --  The CPU associated to the task (if any) must belong to the
      --  dispatching domain.

      if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
        and then
          (Base_CPU not in T.Common.Domain'Range
            or else not T.Common.Domain (Base_CPU))
      then
         Initialization.Undefer_Abort_Nestable (Self_ID);
         raise Tasking_Error with "CPU not in dispatching domain";
      end if;

      --  To handle the interaction between pragma CPU and dispatching domains
      --  we need to signal that this task is being allocated to a processor.
      --  This is needed only for tasks belonging to the system domain (the
      --  creation of new dispatching domains can only take processors from the
      --  system domain) and only before the environment task calls the main
      --  procedure (dispatching domains cannot be created after this).

      if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
        and then T.Common.Domain = System.Tasking.System_Domain
        and then not System.Tasking.Dispatching_Domains_Frozen
      then
         --  Increase the number of tasks attached to the CPU to which this
         --  task is being moved.

         Dispatching_Domain_Tasks (Base_CPU) :=
           Dispatching_Domain_Tasks (Base_CPU) + 1;
      end if;

      --  Create the secondary stack for the task as early as possible during
      --  in the creation of a task, since it may be used by the operation of
      --  Ada code within the task.

      begin
         SSL.Create_TSD (T.Common.Compiler_Data, null, Secondary_Stack_Size);
      exception
         when others =>
            Initialization.Undefer_Abort_Nestable (Self_ID);
            raise Storage_Error with "Secondary stack could not be allocated";
      end;

      T.Common.Activation_Link := Chain.T_ID;
      Chain.T_ID := T;
      Created_Task := T;
      Initialization.Undefer_Abort_Nestable (Self_ID);

      pragma Debug
        (Debug.Trace
           (Self_ID, "Created task in " & T.Master_Of_Task'Img, 'C', T));
   end Create_Task;

   --------------------
   -- Current_Master --
   --------------------

   function Current_Master return Master_Level is
   begin
      return STPO.Self.Master_Within;
   end Current_Master;

   ------------------
   -- Enter_Master --
   ------------------

   procedure Enter_Master is
      Self_ID : constant Task_Id := STPO.Self;
   begin
      Self_ID.Master_Within := Self_ID.Master_Within + 1;
      pragma Debug
        (Debug.Trace
           (Self_ID, "Enter_Master ->" & Self_ID.Master_Within'Img, 'M'));
   end Enter_Master;

   -------------------------------
   -- Expunge_Unactivated_Tasks --
   -------------------------------

   --  See procedure Close_Entries for the general case

   procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
      Self_ID : constant Task_Id := STPO.Self;
      C       : Task_Id;
      Call    : Entry_Call_Link;
      Temp    : Task_Id;

   begin
      pragma Debug
        (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));

      Initialization.Defer_Abort_Nestable (Self_ID);

      --  ???
      --  Experimentation has shown that abort is sometimes (but not always)
      --  already deferred when this is called.

      --  That may indicate an error. Find out what is going on

      C := Chain.T_ID;
      while C /= null loop
         pragma Assert (C.Common.State = Unactivated);

         Temp := C.Common.Activation_Link;

         if C.Common.State = Unactivated then
            Lock_RTS;
            Write_Lock (C);

            for J in 1 .. C.Entry_Num loop
               Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
               pragma Assert (Call = null);
            end loop;

            Unlock (C);

            Initialization.Remove_From_All_Tasks_List (C);
            Unlock_RTS;

            Vulnerable_Free_Task (C);
            C := Temp;
         end if;
      end loop;

      Chain.T_ID := null;
      Initialization.Undefer_Abort_Nestable (Self_ID);
   end Expunge_Unactivated_Tasks;

   ---------------------------
   -- Finalize_Global_Tasks --
   ---------------------------

   --  ???
   --  We have a potential problem here if finalization of global objects does
   --  anything with signals or the timer server, since by that time those
   --  servers have terminated.

   --  It is hard to see how that would occur

   --  However, a better solution might be to do all this finalization
   --  using the global finalization chain.

   procedure Finalize_Global_Tasks is
      Self_ID : constant Task_Id := STPO.Self;

      Ignore_1 : Boolean;
      Ignore_2 : Boolean;

      function State
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
      pragma Import (C, State, "__gnat_get_interrupt_state");
      --  Get interrupt state for interrupt number Int. Defined in init.c

      Default : constant Character := 's';
      --    's'   Interrupt_State pragma set state to System (use "default"
      --           system handler)

   begin
      if Self_ID.Deferral_Level = 0 then
         --  ???
         --  In principle, we should be able to predict whether abort is
         --  already deferred here (and it should not be deferred yet but in
         --  practice it seems Finalize_Global_Tasks is being called sometimes,
         --  from RTS code for exceptions, with abort already deferred.

         Initialization.Defer_Abort_Nestable (Self_ID);

         --  Never undefer again
      end if;

      --  This code is only executed by the environment task

      pragma Assert (Self_ID = Environment_Task);

      --  Set Environment_Task'Callable to false to notify library-level tasks
      --  that it is waiting for them.

      Self_ID.Callable := False;

      --  Exit level 2 master, for normal tasks in library-level packages

      Complete_Master;

      --  Force termination of "independent" library-level server tasks

      Lock_RTS;
      Abort_Dependents (Self_ID);
      Unlock_RTS;

      --  We need to explicitly wait for the task to be terminated here
      --  because on true concurrent system, we may end this procedure before
      --  the tasks are really terminated.

      Write_Lock (Self_ID);

      --  If the Abort_Task signal is set to system, it means that we may
      --  not have been able to abort all independent tasks (in particular,
      --  Server_Task may be blocked, waiting for a signal), in which case, do
      --  not wait for Independent_Task_Count to go down to 0. We arbitrarily
      --  limit the number of loop iterations; if an independent task does not
      --  terminate, we do not want to hang here. In that case, the thread will
      --  be terminated when the process exits.

      if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
      then
         for J in 1 .. 10 loop
            exit when Utilities.Independent_Task_Count = 0;

            --  We used to yield here, but this did not take into account low
            --  priority tasks that would cause dead lock in some cases (true
            --  FIFO scheduling).

            Timed_Sleep
              (Self_ID, 0.01, System.OS_Primitives.Relative,
               Self_ID.Common.State, Ignore_1, Ignore_2);
         end loop;
      end if;

      --  ??? On multi-processor environments, it seems that the above loop
      --  isn't sufficient, so we need to add an additional delay.

      Timed_Sleep
        (Self_ID, 0.01, System.OS_Primitives.Relative,
         Self_ID.Common.State, Ignore_1, Ignore_2);

      Unlock (Self_ID);

      --  Complete the environment task

      Vulnerable_Complete_Task (Self_ID);

      --  Handle normal task termination by the environment task, but only
      --  for the normal task termination. In the case of Abnormal and
      --  Unhandled_Exception they must have been handled before, and the
      --  task termination soft link must have been changed so the task
      --  termination routine is not executed twice.

      SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);

      --  Finalize all library-level controlled objects

      if not SSL."=" (SSL.Finalize_Library_Objects, null) then
         SSL.Finalize_Library_Objects.all;
      end if;

      --  Reset the soft links to non-tasking

      SSL.Abort_Defer        := SSL.Abort_Defer_NT'Access;
      SSL.Abort_Undefer      := SSL.Abort_Undefer_NT'Access;
      SSL.Lock_Task          := SSL.Task_Lock_NT'Access;
      SSL.Unlock_Task        := SSL.Task_Unlock_NT'Access;
      SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
      SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
      SSL.Get_Sec_Stack      := SSL.Get_Sec_Stack_NT'Access;
      SSL.Set_Sec_Stack      := SSL.Set_Sec_Stack_NT'Access;
      SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
      SSL.Get_Stack_Info     := SSL.Get_Stack_Info_NT'Access;

      --  Don't bother trying to finalize Initialization.Global_Task_Lock
      --  and System.Task_Primitives.RTS_Lock.

   end Finalize_Global_Tasks;

   ---------------
   -- Free_Task --
   ---------------

   procedure Free_Task (T : Task_Id) is
      Self_Id : constant Task_Id := Self;

   begin
      Initialization.Task_Lock (Self_Id);

      if T.Common.State = Terminated then

         --  It is not safe to call Abort_Defer or Write_Lock at this stage

         Lock_RTS;
         Initialization.Finalize_Attributes (T);
         Initialization.Remove_From_All_Tasks_List (T);
         Unlock_RTS;

         Initialization.Task_Unlock (Self_Id);

         System.Task_Primitives.Operations.Finalize_TCB (T);

      else
         --  If the task is not terminated, then mark the task as to be freed
         --  upon termination.

         T.Free_On_Termination := True;
         Initialization.Task_Unlock (Self_Id);
      end if;
   end Free_Task;

   ---------------------------
   -- Move_Activation_Chain --
   ---------------------------

   procedure Move_Activation_Chain
     (From, To   : Activation_Chain_Access;
      New_Master : Master_ID)
   is
      Self_ID : constant Task_Id := STPO.Self;
      C       : Task_Id;

   begin
      pragma Debug
        (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));

      --  Nothing to do if From is empty, and we can check that without
      --  deferring aborts.

      C := From.all.T_ID;

      if C = null then
         return;
      end if;

      Initialization.Defer_Abort_Nestable (Self_ID);

      --  Loop through the From chain, changing their Master_Of_Task fields,
      --  and to find the end of the chain.

      loop
         C.Master_Of_Task := New_Master;
         exit when C.Common.Activation_Link = null;
         C := C.Common.Activation_Link;
      end loop;

      --  Hook From in at the start of To

      C.Common.Activation_Link := To.all.T_ID;
      To.all.T_ID := From.all.T_ID;

      --  Set From to empty

      From.all.T_ID := null;

      Initialization.Undefer_Abort_Nestable (Self_ID);
   end Move_Activation_Chain;

   ------------------
   -- Task_Wrapper --
   ------------------

   --  The task wrapper is a procedure that is called first for each task body
   --  and which in turn calls the compiler-generated task body procedure.
   --  The wrapper's main job is to do initialization for the task. It also
   --  has some locally declared objects that serve as per-task local data.
   --  Task finalization is done by Complete_Task, which is called from an
   --  at-end handler that the compiler generates.

   procedure Task_Wrapper (Self_ID : Task_Id) is
      use System.Standard_Library;
      use System.Stack_Usage;

      Bottom_Of_Stack : aliased Integer;

      Task_Alternate_Stack :
        aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
      --  The alternate signal stack for this task, if any

      Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
      --  Whether to use above alternate signal stack for stack overflows

      SEH_Table : aliased SSE.Storage_Array (1 .. 8);
      --  Structured Exception Registration table (2 words)

      procedure Install_SEH_Handler (Addr : System.Address);
      pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
      --  Install the SEH (Structured Exception Handling) handler

      Cause : Cause_Of_Termination := Normal;
      --  Indicates the reason why this task terminates. Normal corresponds to
      --  a task terminating due to completing the last statement of its body,
      --  or as a result of waiting on a terminate alternative. If the task
      --  terminates because it is being aborted then Cause will be set
      --  to Abnormal. If the task terminates because of an exception
      --  raised by the execution of its task body, then Cause is set
      --  to Unhandled_Exception.

      EO : Exception_Occurrence;
      --  If the task terminates because of an exception raised by the
      --  execution of its task body, then EO will contain the associated
      --  exception occurrence. Otherwise, it will contain Null_Occurrence.

      TH : Termination_Handler := null;
      --  Pointer to the protected procedure to be executed upon task
      --  termination.

      procedure Search_Fall_Back_Handler (ID : Task_Id);
      --  Procedure that searches recursively a fall-back handler through the
      --  master relationship. If the handler is found, its pointer is stored
      --  in TH. It stops when the handler is found or when the ID is null.

      ------------------------------
      -- Search_Fall_Back_Handler --
      ------------------------------

      procedure Search_Fall_Back_Handler (ID : Task_Id) is
      begin
         --  A null Task_Id indicates that we have reached the root of the
         --  task hierarchy and no handler has been found.

         if ID = null then
            return;

         --  If there is a fall back handler, store its pointer for later
         --  execution.

         elsif ID.Common.Fall_Back_Handler /= null then
            TH := ID.Common.Fall_Back_Handler;

         --  Otherwise look for a fall back handler in the parent

         else
            Search_Fall_Back_Handler (ID.Common.Parent);
         end if;
      end Search_Fall_Back_Handler;

   --  Start of processing for Task_Wrapper

   begin
      pragma Assert (Self_ID.Deferral_Level = 1);

      Debug.Master_Hook
        (Self_ID, Self_ID.Common.Parent, Self_ID.Master_Of_Task);

      if Use_Alternate_Stack then
         Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
      end if;

      --  Set the guard page at the bottom of the stack. The call to unprotect
      --  the page is done in Terminate_Task

      Stack_Guard (Self_ID, True);

      --  Initialize low-level TCB components, that cannot be initialized by
      --  the creator. Enter_Task sets Self_ID.LL.Thread.

      Enter_Task (Self_ID);

      --  Initialize dynamic stack usage

      if System.Stack_Usage.Is_Enabled then
         declare
            Guard_Page_Size : constant := 16 * 1024;
            --  Part of the stack used as a guard page. This is an OS dependent
            --  value, so we need to use the maximum. This value is only used
            --  when the stack address is known, that is currently Windows.

            Small_Overflow_Guard : constant := 12 * 1024;
            --  Note: this used to be 4K, but was changed to 12K, since
            --  smaller values resulted in segmentation faults from dynamic
            --  stack analysis.

            Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
            --  These two values are experimental, and seem to work on most
            --  platforms. They still need to be analyzed further. They also
            --  need documentation, what are they and why does the logic differ
            --  depending on whether the stack is large or small???

            Pattern_Size : Natural :=
                             Natural (Self_ID.Common.
                                        Compiler_Data.Pri_Stack_Info.Size);
            --  Size of the pattern

            Stack_Base : Address;
            --  Address of the base of the stack

         begin
            Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;

            if Stack_Base = Null_Address then

               --  On many platforms, we don't know the real stack base
               --  address. Estimate it using an address in the frame.

               Stack_Base := Bottom_Of_Stack'Address;

               --  Adjustments for inner frames

               Pattern_Size := Pattern_Size -
                 (if Pattern_Size < Big_Overflow_Guard
                    then Small_Overflow_Guard
                    else Big_Overflow_Guard);
            else
               --  Reduce by the size of the final guard page

               Pattern_Size := Pattern_Size - Guard_Page_Size;
            end if;

            STPO.Lock_RTS;
            Initialize_Analyzer
              (Self_ID.Common.Analyzer,
               Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
               Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
               SSE.To_Integer (Stack_Base),
               Pattern_Size);
            STPO.Unlock_RTS;
            Fill_Stack (Self_ID.Common.Analyzer);
         end;
      end if;

      --  We setup the SEH (Structured Exception Handling) handler if supported
      --  on the target.

      Install_SEH_Handler (SEH_Table'Address);

      --  Initialize exception occurrence

      Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);

      --  We lock RTS_Lock to wait for activator to finish activating the rest
      --  of the chain, so that everyone in the chain comes out in priority
      --  order.

      --  This also protects the value of
      --    Self_ID.Common.Activator.Common.Wait_Count.

      Lock_RTS;
      Unlock_RTS;

      if not System.Restrictions.Abort_Allowed then

         --  If Abort is not allowed, reset the deferral level since it will
         --  not get changed by the generated code. Keeping a default value
         --  of one would prevent some operations (e.g. select or delay) to
         --  proceed successfully.

         Self_ID.Deferral_Level := 0;
      end if;

      if Global_Task_Debug_Event_Set then
         Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
      end if;

      declare
         use Ada.Task_Initialization;

         Global_Initialization_Handler : Initialization_Handler;
         pragma Atomic (Global_Initialization_Handler);
         pragma Import (Ada, Global_Initialization_Handler,
                        "__gnat_global_initialization_handler");

      begin
         --  We are separating the following portion of the code in order to
         --  place the exception handlers in a different block. In this way,
         --  we do not call Set_Jmpbuf_Address (which needs Self) before we
         --  set Self in Enter_Task

         --  Call the initialization hook if any

         if Global_Initialization_Handler /= null then
            Global_Initialization_Handler.all;
         end if;

         --  Call the task body procedure

         --  The task body is called with abort still deferred. That
         --  eliminates a dangerous window, for which we had to patch-up in
         --  Terminate_Task.

         --  During the expansion of the task body, we insert an RTS-call
         --  to Abort_Undefer, at the first point where abort should be
         --  allowed.

         Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
         Initialization.Defer_Abort_Nestable (Self_ID);

      exception
         --  We can't call Terminate_Task in the exception handlers below,
         --  since there may be (e.g. in the case of GCC exception handling)
         --  clean ups associated with the exception handler that need to
         --  access task specific data.

         --  Defer abort so that this task can't be aborted while exiting

         when Standard'Abort_Signal =>
            Initialization.Defer_Abort_Nestable (Self_ID);

            --  Update the cause that motivated the task termination so that
            --  the appropriate information is passed to the task termination
            --  procedure. Task termination as a result of waiting on a
            --  terminate alternative is a normal termination, although it is
            --  implemented using the abort mechanisms.

            if Self_ID.Terminate_Alternative then
               Cause := Normal;

               if Global_Task_Debug_Event_Set then
                  Debug.Signal_Debug_Event
                   (Debug.Debug_Event_Terminated, Self_ID);
               end if;
            else
               Cause := Abnormal;

               if Global_Task_Debug_Event_Set then
                  Debug.Signal_Debug_Event
                   (Debug.Debug_Event_Abort_Terminated, Self_ID);
               end if;
            end if;

         when others =>
            --  ??? Using an E : others here causes CD2C11A to fail on Tru64

            Initialization.Defer_Abort_Nestable (Self_ID);

            --  Perform the task specific exception tracing duty.  We handle
            --  these outputs here and not in the common notification routine
            --  because we need access to tasking related data and we don't
            --  want to drag dependencies against tasking related units in the
            --  the common notification units. Additionally, no trace is ever
            --  triggered from the common routine for the Unhandled_Raise case
            --  in tasks, since an exception never appears unhandled in this
            --  context because of this handler.

            if Exception_Trace = Unhandled_Raise then
               Trace_Unhandled_Exception_In_Task (Self_ID);
            end if;

            --  Update the cause that motivated the task termination so that
            --  the appropriate information is passed to the task termination
            --  procedure, as well as the associated Exception_Occurrence.

            Cause := Unhandled_Exception;

            Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);

            if Global_Task_Debug_Event_Set then
               Debug.Signal_Debug_Event
                 (Debug.Debug_Event_Exception_Terminated, Self_ID);
            end if;
      end;

      --  Look for a task termination handler. This code is for all tasks but
      --  the environment task. The task termination code for the environment
      --  task is executed by SSL.Task_Termination_Handler.

      Write_Lock (Self_ID);

      if Self_ID.Common.Specific_Handler /= null then
         TH := Self_ID.Common.Specific_Handler;

      --  Independent tasks should not call the Fall_Back_Handler (of the
      --  environment task), because they are implementation artifacts that
      --  should be invisible to Ada programs.

      elsif Self_ID.Master_Of_Task /= Independent_Task_Level then

         --  Look for a fall-back handler following the master relationship
         --  for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
         --  handler applies only to the dependent tasks of the task". Hence,
         --  if the terminating tasks (Self_ID) had a fall-back handler, it
         --  would not apply to itself, so we start the search with the parent.

         Search_Fall_Back_Handler (Self_ID.Common.Parent);
      end if;

      Unlock (Self_ID);

      --  Execute the task termination handler if we found it

      if TH /= null then
         begin
            TH.all (Cause, Self_ID, EO);
         exception
            --  RM-C.7.3(16) requires all exceptions raised here to be ignored

            when others =>
               null;
         end;
      end if;

      if System.Stack_Usage.Is_Enabled then
         Compute_Result (Self_ID.Common.Analyzer);
         Report_Result (Self_ID.Common.Analyzer);
      end if;

      Terminate_Task (Self_ID);
   end Task_Wrapper;

   --------------------
   -- Terminate_Task --
   --------------------

   --  Before we allow the thread to exit, we must clean up. This is a delicate
   --  job. We must wake up the task's master, who may immediately try to
   --  deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.

   --  To avoid this, the parent task must be blocked up to the latest
   --  statement executed. The trouble is that we have another step that we
   --  also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
   --  We have to postpone that until the end because compiler-generated code
   --  is likely to try to access that data at just about any point.

   --  We can't call Destroy_TSD while we are holding any other locks, because
   --  it locks Global_Task_Lock, and our deadlock prevention rules require
   --  that to be the outermost lock. Our first "solution" was to just lock
   --  Global_Task_Lock in addition to the other locks, and force the parent to
   --  also lock this lock between its wakeup and its freeing of the ATCB. See
   --  Complete_Task for the parent-side of the code that has the matching
   --  calls to Task_Lock and Task_Unlock. That was not really a solution,
   --  since the operation Task_Unlock continued to access the ATCB after
   --  unlocking, after which the parent was observed to race ahead, deallocate
   --  the ATCB, and then reallocate it to another task. The call to
   --  Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
   --  the data of the new task that reused the ATCB. To solve this problem, we
   --  introduced the new operation Final_Task_Unlock.

   procedure Terminate_Task (Self_ID : Task_Id) is
      Environment_Task : constant Task_Id := STPO.Environment_Task;
      Master_Of_Task   : Integer;
      Deallocate       : Boolean;

   begin
      Debug.Task_Termination_Hook;

      --  Since GCC cannot allocate stack chunks efficiently without reordering
      --  some of the allocations, we have to handle this unexpected situation
      --  here. Normally we never have to call Vulnerable_Complete_Task here.

      if Self_ID.Common.Activator /= null then
         Vulnerable_Complete_Task (Self_ID);
      end if;

      Initialization.Task_Lock (Self_ID);

      Master_Of_Task := Self_ID.Master_Of_Task;

      --  Check if the current task is an independent task If so, decrement
      --  the Independent_Task_Count value.

      if Master_Of_Task = Independent_Task_Level then
         Write_Lock (Environment_Task);
         Utilities.Independent_Task_Count :=
           Utilities.Independent_Task_Count - 1;
         Unlock (Environment_Task);
      end if;

      --  Unprotect the guard page if needed

      Stack_Guard (Self_ID, False);

      Utilities.Make_Passive (Self_ID, Task_Completed => True);
      Deallocate := Self_ID.Free_On_Termination;

      pragma Assert (Check_Exit (Self_ID));

      SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
      Initialization.Final_Task_Unlock (Self_ID);

      --  WARNING: past this point, this thread must assume that the ATCB has
      --  been deallocated, and can't access it anymore (which is why we have
      --  saved the Free_On_Termination flag in a temporary variable).

      if Deallocate then
         Free_Task (Self_ID);
      end if;

      if Master_Of_Task > 0 then
         STPO.Exit_Task;
      end if;
   end Terminate_Task;

   ----------------
   -- Terminated --
   ----------------

   function Terminated (T : Task_Id) return Boolean is
      Self_ID : constant Task_Id := STPO.Self;
      Result  : Boolean;

   begin
      Initialization.Defer_Abort_Nestable (Self_ID);
      Write_Lock (T);
      Result := T.Common.State = Terminated;
      Unlock (T);
      Initialization.Undefer_Abort_Nestable (Self_ID);

      return Result;
   end Terminated;

   ----------------------------------------
   -- Trace_Unhandled_Exception_In_Task --
   ----------------------------------------

   procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
      procedure To_Stderr (S : String);
      pragma Import (Ada, To_Stderr, "__gnat_to_stderr");

      use System.Soft_Links;

      function To_Address is new
        Ada.Unchecked_Conversion
         (Task_Id, System.Task_Primitives.Task_Address);

      Excep : constant Exception_Occurrence_Access :=
                SSL.Get_Current_Excep.all;

   begin
      --  This procedure is called by the task outermost handler in
      --  Task_Wrapper below, so only once the task stack has been fully
      --  unwound. The common notification routine has been called at the
      --  raise point already.

      --  Lock to prevent unsynchronized output

      Initialization.Task_Lock (Self_Id);
      To_Stderr ("task ");

      if Self_Id.Common.Task_Image_Len /= 0 then
         To_Stderr
           (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
         To_Stderr ("_");
      end if;

      To_Stderr (System.Address_Image (To_Address (Self_Id)));
      To_Stderr (" terminated by unhandled exception");
      To_Stderr ([ASCII.LF]);
      To_Stderr (Exception_Information (Excep.all));
      Initialization.Task_Unlock (Self_Id);
   end Trace_Unhandled_Exception_In_Task;

   ------------------------------------
   -- Vulnerable_Complete_Activation --
   ------------------------------------

   --  As in several other places, the locks of the activator and activated
   --  task are both locked here. This follows our deadlock prevention lock
   --  ordering policy, since the activated task must be created after the
   --  activator.

   procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
      Activator : constant Task_Id := Self_ID.Common.Activator;

   begin
      pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));

      Write_Lock (Activator);
      Write_Lock (Self_ID);

      pragma Assert (Self_ID.Common.Activator /= null);

      --  Remove dangling reference to Activator, since a task may outlive its
      --  activator.

      Self_ID.Common.Activator := null;

      --  Wake up the activator, if it is waiting for a chain of tasks to
      --  activate, and we are the last in the chain to complete activation.

      if Activator.Common.State = Activator_Sleep then
         Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;

         if Activator.Common.Wait_Count = 0 then
            Wakeup (Activator, Activator_Sleep);
         end if;
      end if;

      --  The activator raises a Tasking_Error if any task it is activating
      --  is completed before the activation is done. However, if the reason
      --  for the task completion is an abort, we do not raise an exception.
      --  See RM 9.2(5).

      if not Self_ID.Callable
        and then Self_ID.Pending_ATC_Level /= Level_Completed_Task
      then
         Activator.Common.Activation_Failed := True;
      end if;

      Unlock (Self_ID);
      Unlock (Activator);

      --  After the activation, active priority should be the same as base
      --  priority. We must unlock the Activator first, though, since it
      --  should not wait if we have lower priority.

      if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
         Write_Lock (Self_ID);
         Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
         Unlock (Self_ID);
      end if;
   end Vulnerable_Complete_Activation;

   --------------------------------
   -- Vulnerable_Complete_Master --
   --------------------------------

   procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
      C  : Task_Id;
      P  : Task_Id;
      CM : constant Master_Level := Self_ID.Master_Within;
      T  : aliased Task_Id;

      To_Be_Freed : Task_Id;
      --  This is a list of ATCBs to be freed, after we have released all RTS
      --  locks. This is necessary because of the locking order rules, since
      --  the storage manager uses Global_Task_Lock.

      pragma Warnings (Off);
      function Check_Unactivated_Tasks return Boolean;
      pragma Warnings (On);
      --  Temporary error-checking code below. This is part of the checks
      --  added in the new run time. Call it only inside a pragma Assert.

      -----------------------------
      -- Check_Unactivated_Tasks --
      -----------------------------

      function Check_Unactivated_Tasks return Boolean is
      begin
         Lock_RTS;
         Write_Lock (Self_ID);

         C := All_Tasks_List;
         while C /= null loop
            if C.Common.Activator = Self_ID and then C.Master_Of_Task = CM then
               return False;
            end if;

            if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
               Write_Lock (C);

               if C.Common.State = Unactivated then
                  return False;
               end if;

               Unlock (C);
            end if;

            C := C.Common.All_Tasks_Link;
         end loop;

         Unlock (Self_ID);
         Unlock_RTS;

         return True;
      end Check_Unactivated_Tasks;

   --  Start of processing for Vulnerable_Complete_Master

   begin
      pragma Debug
        (Debug.Trace (Self_ID, "V_Complete_Master(" & CM'Img & ")", 'C'));

      pragma Assert (Self_ID.Common.Wait_Count = 0);
      pragma Assert
        (Self_ID.Deferral_Level > 0
          or else not System.Restrictions.Abort_Allowed);

      --  Count how many active dependent tasks this master currently has, and
      --  record this in Wait_Count.

      --  This count should start at zero, since it is initialized to zero for
      --  new tasks, and the task should not exit the sleep-loops that use this
      --  count until the count reaches zero.

      --  While we're counting, if we run across any unactivated tasks that
      --  belong to this master, we summarily terminate them as required by
      --  RM-9.2(6).

      Lock_RTS;
      Write_Lock (Self_ID);

      C := All_Tasks_List;
      while C /= null loop

         --  Terminate unactivated (never-to-be activated) tasks

         if C.Common.Activator = Self_ID and then C.Master_Of_Task = CM then

            --  Usually, C.Common.Activator = Self_ID implies C.Master_Of_Task
            --  = CM. The only case where C is pending activation by this
            --  task, but the master of C is not CM is in Ada 2005, when C is
            --  part of a return object of a build-in-place function.

            pragma Assert (C.Common.State = Unactivated);

            Write_Lock (C);
            C.Common.Activator := null;
            C.Common.State := Terminated;
            C.Callable := False;
            Utilities.Cancel_Queued_Entry_Calls (C);
            Unlock (C);
         end if;

         --  Count it if directly dependent on this master

         if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
            Write_Lock (C);

            if C.Awake_Count /= 0 then
               Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
            end if;

            Unlock (C);
         end if;

         C := C.Common.All_Tasks_Link;
      end loop;

      Self_ID.Common.State := Master_Completion_Sleep;
      Unlock (Self_ID);
      Unlock_RTS;

      --  Wait until dependent tasks are all terminated or ready to terminate.
      --  While waiting, the task may be awakened if the task's priority needs
      --  changing, or this master is aborted. In the latter case, we abort the
      --  dependents, and resume waiting until Wait_Count goes to zero.

      Write_Lock (Self_ID);

      loop
         exit when Self_ID.Common.Wait_Count = 0;

         --  Here is a difference as compared to Complete_Master

         if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
           and then not Self_ID.Dependents_Aborted
         then
            Unlock (Self_ID);
            Lock_RTS;
            Abort_Dependents (Self_ID);
            Unlock_RTS;
            Write_Lock (Self_ID);
         else
            pragma Debug
              (Debug.Trace (Self_ID, "master_completion_sleep", 'C'));
            Sleep (Self_ID, Master_Completion_Sleep);
         end if;
      end loop;

      Self_ID.Common.State := Runnable;
      Unlock (Self_ID);

      --  Dependents are all terminated or on terminate alternatives. Now,
      --  force those on terminate alternatives to terminate, by aborting them.

      pragma Assert (Check_Unactivated_Tasks);

      if Self_ID.Alive_Count > 1 then
         --  ???
         --  Consider finding a way to skip the following extra steps if there
         --  are no dependents with terminate alternatives. This could be done
         --  by adding another count to the ATCB, similar to Awake_Count, but
         --  keeping track of tasks that are on terminate alternatives.

         pragma Assert (Self_ID.Common.Wait_Count = 0);

         --  Force any remaining dependents to terminate by aborting them

         Lock_RTS;
         Abort_Dependents (Self_ID);

         --  Above, when we "abort" the dependents we are simply using this
         --  operation for convenience. We are not required to support the full
         --  abort-statement semantics; in particular, we are not required to
         --  immediately cancel any queued or in-service entry calls. That is
         --  good, because if we tried to cancel a call we would need to lock
         --  the caller, in order to wake the caller up. Our anti-deadlock
         --  rules prevent us from doing that without releasing the locks on C
         --  and Self_ID. Releasing and retaking those locks would be wasteful
         --  at best, and should not be considered further without more
         --  detailed analysis of potential concurrent accesses to the ATCBs
         --  of C and Self_ID.

         --  Count how many "alive" dependent tasks this master currently has,
         --  and record this in Wait_Count. This count should start at zero,
         --  since it is initialized to zero for new tasks, and the task should
         --  not exit the sleep-loops that use this count until the count
         --  reaches zero.

         pragma Assert (Self_ID.Common.Wait_Count = 0);

         Write_Lock (Self_ID);

         C := All_Tasks_List;
         while C /= null loop
            if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
               Write_Lock (C);

               pragma Assert (C.Awake_Count = 0);

               if C.Alive_Count > 0 then
                  pragma Assert (C.Terminate_Alternative);
                  Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
               end if;

               Unlock (C);
            end if;

            C := C.Common.All_Tasks_Link;
         end loop;

         Self_ID.Common.State := Master_Phase_2_Sleep;
         Unlock (Self_ID);
         Unlock_RTS;

         --  Wait for all counted tasks to finish terminating themselves

         Write_Lock (Self_ID);

         loop
            exit when Self_ID.Common.Wait_Count = 0;
            Sleep (Self_ID, Master_Phase_2_Sleep);
         end loop;

         Self_ID.Common.State := Runnable;
         Unlock (Self_ID);
      end if;

      --  We don't wake up for abort here. We are already terminating just as
      --  fast as we can, so there is no point.

      --  Remove terminated tasks from the list of Self_ID's dependents, but
      --  don't free their ATCBs yet, because of lock order restrictions, which
      --  don't allow us to call "free" or "malloc" while holding any other
      --  locks. Instead, we put those ATCBs to be freed onto a temporary list,
      --  called To_Be_Freed.

      Lock_RTS;
      C := All_Tasks_List;
      P := null;
      while C /= null loop

         --  If Free_On_Termination is set, do nothing here, and let the
         --  task free itself if not already done, otherwise we risk a race
         --  condition where Vulnerable_Free_Task is called in the loop below,
         --  while the task calls Free_Task itself, in Terminate_Task.

         if C.Common.Parent = Self_ID
           and then C.Master_Of_Task >= CM
           and then not C.Free_On_Termination
         then
            if P /= null then
               P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
            else
               All_Tasks_List := C.Common.All_Tasks_Link;
            end if;

            T := C.Common.All_Tasks_Link;
            C.Common.All_Tasks_Link := To_Be_Freed;
            To_Be_Freed := C;
            C := T;

         else
            P := C;
            C := C.Common.All_Tasks_Link;
         end if;
      end loop;

      Unlock_RTS;

      --  Free all the ATCBs on the list To_Be_Freed

      --  The ATCBs in the list are no longer in All_Tasks_List, and after
      --  any interrupt entries are detached from them they should no longer
      --  be referenced.

      --  Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
      --  avoid a race between a terminating task and its parent. The parent
      --  might try to deallocate the ACTB out from underneath the exiting
      --  task. Note that Free will also lock Global_Task_Lock, but that is
      --  OK, since this is the *one* lock for which we have a mechanism to
      --  support nested locking. See Task_Wrapper and its finalizer for more
      --  explanation.

      --  ???
      --  The check "T.Common.Parent /= null ..." below is to prevent dangling
      --  references to terminated library-level tasks, which could otherwise
      --  occur during finalization of library-level objects. A better solution
      --  might be to hook task objects into the finalization chain and
      --  deallocate the ATCB when the task object is deallocated. However,
      --  this change is not likely to gain anything significant, since all
      --  this storage should be recovered en-masse when the process exits.

      while To_Be_Freed /= null loop
         T := To_Be_Freed;
         To_Be_Freed := T.Common.All_Tasks_Link;

         --  ??? On SGI there is currently no Interrupt_Manager, that's why we
         --  need to check if the Interrupt_Manager_ID is null.

         if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
            declare
               Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
               --  Corresponds to the entry index of System.Interrupts.
               --  Interrupt_Manager.Detach_Interrupt_Entries. Be sure
               --  to update this value when changing Interrupt_Manager specs.

               type Param_Type is access all Task_Id;

               Param : aliased Param_Type := T'Access;

            begin
               System.Tasking.Rendezvous.Call_Simple
                 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
                  Param'Address);
            end;
         end if;

         if (T.Common.Parent /= null
              and then T.Common.Parent.Common.Parent /= null)
           or else T.Master_Of_Task > Library_Task_Level
         then
            Initialization.Task_Lock (Self_ID);

            --  If Sec_Stack_Ptr is not null, it means that Destroy_TSD
            --  has not been called yet (case of an unactivated task).

            if T.Common.Compiler_Data.Sec_Stack_Ptr /= null then
               SSL.Destroy_TSD (T.Common.Compiler_Data);
            end if;

            Vulnerable_Free_Task (T);
            Initialization.Task_Unlock (Self_ID);
         end if;
      end loop;

      --  It might seem nice to let the terminated task deallocate its own
      --  ATCB. That would not cover the case of unactivated tasks. It also
      --  would force us to keep the underlying thread around past termination,
      --  since references to the ATCB are possible past termination.

      --  Currently, we get rid of the thread as soon as the task terminates,
      --  and let the parent recover the ATCB later.

      --  Some day, if we want to recover the ATCB earlier, at task
      --  termination, we could consider using "fat task IDs", that include the
      --  serial number with the ATCB pointer, to catch references to tasks
      --  that no longer have ATCBs. It is not clear how much this would gain,
      --  since the user-level task object would still be occupying storage.

      --  Make next master level up active. We don't need to lock the ATCB,
      --  since the value is only updated by each task for itself.

      Self_ID.Master_Within := CM - 1;

      Debug.Master_Completed_Hook (Self_ID, CM);
   end Vulnerable_Complete_Master;

   ------------------------------
   -- Vulnerable_Complete_Task --
   ------------------------------

   --  Complete the calling task

   --  This procedure must be called with abort deferred. It should only be
   --  called by Complete_Task and Finalize_Global_Tasks (for the environment
   --  task).

   --  The effect is similar to that of Complete_Master. Differences include
   --  the closing of entries here, and computation of the number of active
   --  dependent tasks in Complete_Master.

   --  We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
   --  because that does its own locking, and because we do not need the lock
   --  to test Self_ID.Common.Activator. That value should only be read and
   --  modified by Self.

   procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
   begin
      pragma Assert
        (Self_ID.Deferral_Level > 0
          or else not System.Restrictions.Abort_Allowed);
      pragma Assert (Self_ID = Self);
      pragma Assert
        (Self_ID.Master_Within in
           Self_ID.Master_Of_Task .. Self_ID.Master_Of_Task + 3);
      pragma Assert (Self_ID.Common.Wait_Count = 0);
      pragma Assert (Self_ID.Open_Accepts = null);
      pragma Assert (Self_ID.ATC_Nesting_Level = Level_No_ATC_Occurring);

      pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));

      Write_Lock (Self_ID);
      Self_ID.Callable := False;

      --  In theory, Self should have no pending entry calls left on its
      --  call-stack. Each async. select statement should clean its own call,
      --  and blocking entry calls should defer abort until the calls are
      --  cancelled, then clean up.

      Utilities.Cancel_Queued_Entry_Calls (Self_ID);
      Unlock (Self_ID);

      if Self_ID.Common.Activator /= null then
         Vulnerable_Complete_Activation (Self_ID);
      end if;

      --  If Self_ID.Master_Within = Self_ID.Master_Of_Task + 2 we may have
      --  dependent tasks for which we need to wait. Otherwise we just exit.

      if Self_ID.Master_Within = Self_ID.Master_Of_Task + 2 then
         Vulnerable_Complete_Master (Self_ID);
      end if;
   end Vulnerable_Complete_Task;

   --------------------------
   -- Vulnerable_Free_Task --
   --------------------------

   --  Recover all runtime system storage associated with the task T. This
   --  should only be called after T has terminated and will no longer be
   --  referenced.

   --  For tasks created by an allocator that fails, due to an exception, it
   --  is called from Expunge_Unactivated_Tasks.

   --  For tasks created by elaboration of task object declarations it is
   --  called from the finalization code of the Task_Wrapper procedure.

   procedure Vulnerable_Free_Task (T : Task_Id) is
   begin
      pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));

      Write_Lock (T);
      Initialization.Finalize_Attributes (T);
      Unlock (T);

      System.Task_Primitives.Operations.Finalize_TCB (T);
   end Vulnerable_Free_Task;

--  Package elaboration code

begin
   --  Establish the Adafinal softlink

   --  This is not done inside the central RTS initialization routine
   --  to avoid with'ing this package from System.Tasking.Initialization.

   SSL.Adafinal := Finalize_Global_Tasks'Access;

   --  Establish soft links for subprograms that manipulate master_id's.
   --  This cannot be done when the RTS is initialized, because of various
   --  elaboration constraints.

   SSL.Current_Master  := Stages.Current_Master'Access;
   SSL.Enter_Master    := Stages.Enter_Master'Access;
   SSL.Complete_Master := Stages.Complete_Master'Access;
end System.Tasking.Stages;