gnat_native_13.2.1_788a01f9/lib/gcc/x86_64-pc-linux-gnu/13.2.0/adainclude/a-cohase.ads

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--           A D A . C O N T A I N E R S . H A S H E D _ S E T S            --
--                                                                          --
--                                 S p e c                                  --
--                                                                          --
--          Copyright (C) 2004-2023, Free Software Foundation, Inc.         --
--                                                                          --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the  contents of the part following the private keyword. --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with Ada.Iterator_Interfaces;

private with Ada.Containers.Hash_Tables;
with Ada.Containers.Helpers;
private with Ada.Finalization;
private with Ada.Streams;
private with Ada.Strings.Text_Buffers;

generic
   type Element_Type is private;

   with function Hash (Element : Element_Type) return Hash_Type;

   with function Equivalent_Elements
          (Left, Right : Element_Type) return Boolean;

   with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Hashed_Sets with
  SPARK_Mode => Off
is
   pragma Annotate (CodePeer, Skip_Analysis);
   pragma Preelaborate;
   pragma Remote_Types;

   type Set is tagged private
   with
      Constant_Indexing => Constant_Reference,
      Default_Iterator  => Iterate,
      Iterator_Element  => Element_Type,
      Aggregate         => (Empty       => Empty,
                            Add_Unnamed => Include);

   pragma Preelaborable_Initialization (Set);

   type Cursor is private;
   pragma Preelaborable_Initialization (Cursor);

   function "=" (Left, Right : Cursor) return Boolean;
   --  The representation of cursors includes a component used to optimize
   --  iteration over sets. This component may become unreliable after
   --  multiple set insertions, and must be excluded from cursor equality,
   --  so we need to provide an explicit definition for it, instead of
   --  using predefined equality (as implied by a questionable comment
   --  in the RM). This is also the case for hashed maps, and affects the
   --  use of Insert primitives in hashed structures.

   Empty_Set : constant Set;
   --  Set objects declared without an initialization expression are
   --  initialized to the value Empty_Set.

   No_Element : constant Cursor;
   --  Cursor objects declared without an initialization expression are
   --  initialized to the value No_Element.

   function Has_Element (Position : Cursor) return Boolean;
   --  Equivalent to Position /= No_Element

   package Set_Iterator_Interfaces is new
     Ada.Iterator_Interfaces (Cursor, Has_Element);

   function Empty (Capacity : Count_Type := 1000) return Set;

   function "=" (Left, Right : Set) return Boolean;
   --  For each element in Left, set equality attempts to find the equal
   --  element in Right; if a search fails, then set equality immediately
   --  returns False. The search works by calling Hash to find the bucket in
   --  the Right set that corresponds to the Left element. If the bucket is
   --  non-empty, the search calls the generic formal element equality operator
   --  to compare the element (in Left) to the element of each node in the
   --  bucket (in Right); the search terminates when a matching node in the
   --  bucket is found, or the nodes in the bucket are exhausted. (Note that
   --  element equality is called here, not Equivalent_Elements. Set equality
   --  is the only operation in which element equality is used. Compare set
   --  equality to Equivalent_Sets, which does call Equivalent_Elements.)

   function Equivalent_Sets (Left, Right : Set) return Boolean;
   --  Similar to set equality, with the difference that the element in Left is
   --  compared to the elements in Right using the generic formal
   --  Equivalent_Elements operation instead of element equality.

   function To_Set (New_Item : Element_Type) return Set;
   --  Constructs a singleton set comprising New_Element. To_Set calls Hash to
   --  determine the bucket for New_Item.

   function Capacity (Container : Set) return Count_Type;
   --  Returns the current capacity of the set. Capacity is the maximum length
   --  before which rehashing in guaranteed not to occur.

   procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
   --  Adjusts the current capacity, by allocating a new buckets array. If the
   --  requested capacity is less than the current capacity, then the capacity
   --  is contracted (to a value not less than the current length). If the
   --  requested capacity is greater than the current capacity, then the
   --  capacity is expanded (to a value not less than what is requested). In
   --  either case, the nodes are rehashed from the old buckets array onto the
   --  new buckets array (Hash is called once for each existing element in
   --  order to compute the new index), and then the old buckets array is
   --  deallocated.

   function Length (Container : Set) return Count_Type;
   --  Returns the number of items in the set

   function Is_Empty (Container : Set) return Boolean;
   --  Equivalent to Length (Container) = 0

   procedure Clear (Container : in out Set);
   --  Removes all of the items from the set

   function Element (Position : Cursor) return Element_Type;
   --  Returns the element of the node designated by the cursor

   procedure Replace_Element
     (Container : in out Set;
      Position  : Cursor;
      New_Item  : Element_Type);
   --  If New_Item is equivalent (as determined by calling Equivalent_Elements)
   --  to the element of the node designated by Position, then New_Element is
   --  assigned to that element. Otherwise, it calls Hash to determine the
   --  bucket for New_Item. If the bucket is not empty, then it calls
   --  Equivalent_Elements for each node in that bucket to determine whether
   --  New_Item is equivalent to an element in that bucket. If
   --  Equivalent_Elements returns True then Program_Error is raised (because
   --  an element may appear only once in the set); otherwise, New_Item is
   --  assigned to the node designated by Position, and the node is moved to
   --  its new bucket.

   procedure Query_Element
     (Position : Cursor;
      Process  : not null access procedure (Element : Element_Type));
   --  Calls Process with the element (having only a constant view) of the node
   --  designed by the cursor.

   type Constant_Reference_Type
     (Element : not null access constant Element_Type) is private
        with Implicit_Dereference => Element;

   function Constant_Reference
     (Container : aliased Set;
      Position  : Cursor) return Constant_Reference_Type;
   pragma Inline (Constant_Reference);

   procedure Assign (Target : in out Set; Source : Set);

   function Copy (Source : Set; Capacity : Count_Type := 0) return Set;

   procedure Move (Target : in out Set; Source : in out Set);
   --  Clears Target (if it's not empty), and then moves (not copies) the
   --  buckets array and nodes from Source to Target.

   procedure Insert
     (Container : in out Set;
      New_Item  : Element_Type;
      Position  : out Cursor;
      Inserted  : out Boolean);
   --  Conditionally inserts New_Item into the set. If New_Item is already in
   --  the set, then Inserted returns False and Position designates the node
   --  containing the existing element (which is not modified). If New_Item is
   --  not already in the set, then Inserted returns True and Position
   --  designates the newly-inserted node containing New_Item. The search for
   --  an existing element works as follows. Hash is called to determine
   --  New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
   --  is called to compare New_Item to the element of each node in that
   --  bucket. If the bucket is empty, or there were no equivalent elements in
   --  the bucket, the search "fails" and the New_Item is inserted in the set
   --  (and Inserted returns True); otherwise, the search "succeeds" (and
   --  Inserted returns False).

   procedure Insert  (Container : in out Set; New_Item : Element_Type);
   --  Attempts to insert New_Item into the set, performing the usual insertion
   --  search (which involves calling both Hash and Equivalent_Elements); if
   --  the search succeeds (New_Item is equivalent to an element already in the
   --  set, and so was not inserted), then this operation raises
   --  Constraint_Error. (This version of Insert is similar to Replace, but
   --  having the opposite exception behavior. It is intended for use when you
   --  want to assert that the item is not already in the set.)

   procedure Include (Container : in out Set; New_Item : Element_Type);
   --  Attempts to insert New_Item into the set. If an element equivalent to
   --  New_Item is already in the set (the insertion search succeeded, and
   --  hence New_Item was not inserted), then the value of New_Item is assigned
   --  to the existing element. (This insertion operation only raises an
   --  exception if cursor tampering occurs. It is intended for use when you
   --  want to insert the item in the set, and you don't care whether an
   --  equivalent element is already present.)

   procedure Replace (Container : in out Set; New_Item : Element_Type);
   --  Searches for New_Item in the set; if the search fails (because an
   --  equivalent element was not in the set), then it raises
   --  Constraint_Error. Otherwise, the existing element is assigned the value
   --  New_Item. (This is similar to Insert, but with the opposite exception
   --  behavior. It is intended for use when you want to assert that the item
   --  is already in the set.)

   procedure Exclude (Container : in out Set; Item : Element_Type);
   --  Searches for Item in the set, and if found, removes its node from the
   --  set and then deallocates it. The search works as follows. The operation
   --  calls Hash to determine the item's bucket; if the bucket is not empty,
   --  it calls Equivalent_Elements to compare Item to the element of each node
   --  in the bucket. (This is the deletion analog of Include. It is intended
   --  for use when you want to remove the item from the set, but don't care
   --  whether the item is already in the set.)

   procedure Delete  (Container : in out Set; Item : Element_Type);
   --  Searches for Item in the set (which involves calling both Hash and
   --  Equivalent_Elements). If the search fails, then the operation raises
   --  Constraint_Error. Otherwise it removes the node from the set and then
   --  deallocates it. (This is the deletion analog of non-conditional
   --  Insert. It is intended for use when you want to assert that the item is
   --  already in the set.)

   procedure Delete (Container : in out Set; Position : in out Cursor);
   --  Removes the node designated by Position from the set, and then
   --  deallocates the node. The operation calls Hash to determine the bucket,
   --  and then compares Position to each node in the bucket until there's a
   --  match (it does not call Equivalent_Elements).

   procedure Union (Target : in out Set; Source : Set);
   --  The operation first calls Reserve_Capacity if the current capacity is
   --  less than the sum of the lengths of Source and Target. It then iterates
   --  over the Source set, and conditionally inserts each element into Target.

   function Union (Left, Right : Set) return Set;
   --  The operation first copies the Left set to the result, and then iterates
   --  over the Right set to conditionally insert each element into the result.

   function "or" (Left, Right : Set) return Set renames Union;

   procedure Intersection (Target : in out Set; Source : Set);
   --  Iterates over the Target set (calling First and Next), calling Find to
   --  determine whether the element is in Source. If an equivalent element is
   --  not found in Source, the element is deleted from Target.

   function Intersection (Left, Right : Set) return Set;
   --  Iterates over the Left set, calling Find to determine whether the
   --  element is in Right. If an equivalent element is found, it is inserted
   --  into the result set.

   function "and" (Left, Right : Set) return Set renames Intersection;

   procedure Difference (Target : in out Set; Source : Set);
   --  Iterates over the Source (calling First and Next), calling Find to
   --  determine whether the element is in Target. If an equivalent element is
   --  found, it is deleted from Target.

   function Difference (Left, Right : Set) return Set;
   --  Iterates over the Left set, calling Find to determine whether the
   --  element is in the Right set. If an equivalent element is not found, the
   --  element is inserted into the result set.

   function "-" (Left, Right : Set) return Set renames Difference;

   procedure Symmetric_Difference (Target : in out Set; Source : Set);
   --  The operation first calls Reserve_Capacity if the current capacity is
   --  less than the sum of the lengths of Source and Target. It then iterates
   --  over the Source set, searching for the element in Target (calling Hash
   --  and Equivalent_Elements). If an equivalent element is found, it is
   --  removed from Target; otherwise it is inserted into Target.

   function Symmetric_Difference (Left, Right : Set) return Set;
   --  The operation first iterates over the Left set. It calls Find to
   --  determine whether the element is in the Right set. If no equivalent
   --  element is found, the element from Left is inserted into the result. The
   --  operation then iterates over the Right set, to determine whether the
   --  element is in the Left set. If no equivalent element is found, the Right
   --  element is inserted into the result.

   function "xor" (Left, Right : Set) return Set
     renames Symmetric_Difference;

   function Overlap (Left, Right : Set) return Boolean;
   --  Iterates over the Left set (calling First and Next), calling Find to
   --  determine whether the element is in the Right set. If an equivalent
   --  element is found, the operation immediately returns True. The operation
   --  returns False if the iteration over Left terminates without finding any
   --  equivalent element in Right.

   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
   --  Iterates over Subset (calling First and Next), calling Find to determine
   --  whether the element is in Of_Set. If no equivalent element is found in
   --  Of_Set, the operation immediately returns False. The operation returns
   --  True if the iteration over Subset terminates without finding an element
   --  not in Of_Set (that is, every element in Subset is equivalent to an
   --  element in Of_Set).

   function First (Container : Set) return Cursor;
   --  Returns a cursor that designates the first non-empty bucket, by
   --  searching from the beginning of the buckets array.

   function Next (Position : Cursor) return Cursor;
   --  Returns a cursor that designates the node that follows the current one
   --  designated by Position. If Position designates the last node in its
   --  bucket, the operation calls Hash to compute the index of this bucket,
   --  and searches the buckets array for the first non-empty bucket, starting
   --  from that index; otherwise, it simply follows the link to the next node
   --  in the same bucket.

   procedure Next (Position : in out Cursor);
   --  Equivalent to Position := Next (Position)

   function Find
     (Container : Set;
      Item      : Element_Type) return Cursor;
   --  Searches for Item in the set. Find calls Hash to determine the item's
   --  bucket; if the bucket is not empty, it calls Equivalent_Elements to
   --  compare Item to each element in the bucket. If the search succeeds, Find
   --  returns a cursor designating the node containing the equivalent element;
   --  otherwise, it returns No_Element.

   function Contains (Container : Set; Item : Element_Type) return Boolean;
   --  Equivalent to Find (Container, Item) /= No_Element

   function Equivalent_Elements (Left, Right : Cursor) return Boolean;
   --  Returns the result of calling Equivalent_Elements with the elements of
   --  the nodes designated by cursors Left and Right.

   function Equivalent_Elements
     (Left  : Cursor;
      Right : Element_Type) return Boolean;
   --  Returns the result of calling Equivalent_Elements with element of the
   --  node designated by Left and element Right.

   function Equivalent_Elements
     (Left  : Element_Type;
      Right : Cursor) return Boolean;
   --  Returns the result of calling Equivalent_Elements with element Left and
   --  the element of the node designated by Right.

   procedure Iterate
     (Container : Set;
      Process   : not null access procedure (Position : Cursor));
   --  Calls Process for each node in the set

   function Iterate
     (Container : Set) return Set_Iterator_Interfaces.Forward_Iterator'Class;

   --  Ada 2022 features:

   function Has_Element (Container : Set; Position : Cursor) return Boolean;

   function Tampering_With_Cursors_Prohibited (Container : Set) return Boolean;

   function Element (Container : Set; Position : Cursor) return Element_Type;

   procedure Query_Element
     (Container : Set;
      Position  : Cursor;
      Process   : not null access procedure (Element : Element_Type));

   function Next (Container : Set; Position : Cursor) return Cursor;

   procedure Next (Container : Set; Position : in out Cursor);

   ----------------

   generic
      type Key_Type (<>) is private;

      with function Key (Element : Element_Type) return Key_Type;

      with function Hash (Key : Key_Type) return Hash_Type;

      with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;

   package Generic_Keys is

      function Key (Position : Cursor) return Key_Type;
      --  Applies generic formal operation Key to the element of the node
      --  designated by Position.

      function Key (Container : Set; Position : Cursor) return Key_Type is
        (Key (Element (Container, Position)));

      function Element (Container : Set; Key : Key_Type) return Element_Type;
      --  Searches (as per the key-based Find) for the node containing Key, and
      --  returns the associated element.

      procedure Replace
        (Container : in out Set;
         Key       : Key_Type;
         New_Item  : Element_Type);
      --  Searches (as per the key-based Find) for the node containing Key, and
      --  then replaces the element of that node (as per the element-based
      --  Replace_Element).

      procedure Exclude (Container : in out Set; Key : Key_Type);
      --  Searches for Key in the set, and if found, removes its node from the
      --  set and then deallocates it. The search works by first calling Hash
      --  (on Key) to determine the bucket; if the bucket is not empty, it
      --  calls Equivalent_Keys to compare parameter Key to the value of
      --  generic formal operation Key applied to element of each node in the
      --  bucket.

      procedure Delete (Container : in out Set; Key : Key_Type);
      --  Deletes the node containing Key as per Exclude, with the difference
      --  that Constraint_Error is raised if Key is not found.

      function Find (Container : Set; Key : Key_Type) return Cursor;
      --  Searches for the node containing Key, and returns a cursor
      --  designating the node. The search works by first calling Hash (on Key)
      --  to determine the bucket. If the bucket is not empty, the search
      --  compares Key to the element of each node in the bucket, and returns
      --  the matching node. The comparison itself works by applying the
      --  generic formal Key operation to the element of the node, and then
      --  calling generic formal operation Equivalent_Keys.

      function Contains (Container : Set; Key : Key_Type) return Boolean;
      --  Equivalent to Find (Container, Key) /= No_Element

      procedure Update_Element_Preserving_Key
        (Container : in out Set;
         Position  : Cursor;
         Process   : not null access
                       procedure (Element : in out Element_Type));
      --  Calls Process with the element of the node designated by Position,
      --  but with the restriction that the key-value of the element is not
      --  modified. The operation first makes a copy of the value returned by
      --  applying generic formal operation Key on the element of the node, and
      --  then calls Process with the element. The operation verifies that the
      --  key-part has not been modified by calling generic formal operation
      --  Equivalent_Keys to compare the saved key-value to the value returned
      --  by applying generic formal operation Key to the post-Process value of
      --  element. If the key values compare equal then the operation
      --  completes. Otherwise, the node is removed from the set and
      --  Program_Error is raised.

      type Reference_Type (Element : not null access Element_Type) is private
        with Implicit_Dereference => Element;

      function Reference_Preserving_Key
        (Container : aliased in out Set;
         Position  : Cursor) return Reference_Type;

      function Constant_Reference
        (Container : aliased Set;
         Key       : Key_Type) return Constant_Reference_Type;

      function Reference_Preserving_Key
        (Container : aliased in out Set;
         Key       : Key_Type) return Reference_Type;

   private
      use Ada.Streams;
      type Set_Access is access all Set;
      for Set_Access'Storage_Size use 0;

      --  Key_Preserving references must carry information to allow removal
      --  of elements whose value may have been altered improperly, i.e. have
      --  been given values incompatible with the hash-code of the previous
      --  value, and are thus in the wrong bucket. (RM 18.7 (96.6/3))

      --  We cannot store the key directly because it is an unconstrained type.
      --  To avoid using additional dynamic allocation we store the old cursor
      --  which simplifies possible removal. This is not possible for some
      --  other set types.

      --  The mechanism is different for Update_Element_Preserving_Key, as
      --  in that case the check that buckets have not changed is performed
      --  at the time of the update, not when the reference is finalized.

      package Impl is new Helpers.Generic_Implementation;

      type Reference_Control_Type is
         new Impl.Reference_Control_Type with
      record
         Container : Set_Access;
         Index     : Hash_Type;
         Old_Pos   : Cursor;
         Old_Hash  : Hash_Type;
      end record;

      overriding procedure Finalize (Control : in out Reference_Control_Type);
      pragma Inline (Finalize);

      type Reference_Type (Element : not null access Element_Type) is record
         Control  : Reference_Control_Type;
      end record;

      procedure Read
        (Stream : not null access Root_Stream_Type'Class;
         Item   : out Reference_Type);

      for Reference_Type'Read use Read;

      procedure Write
        (Stream : not null access Root_Stream_Type'Class;
         Item   : Reference_Type);

      for Reference_Type'Write use Write;
   end Generic_Keys;

private
   pragma Inline (Next);

   type Node_Type;
   type Node_Access is access Node_Type;

   type Node_Type is limited record
      Element : aliased Element_Type;
      Next    : Node_Access;
   end record;

   package HT_Types is
     new Hash_Tables.Generic_Hash_Table_Types (Node_Type, Node_Access);

   type Set is new Ada.Finalization.Controlled with record
      HT : HT_Types.Hash_Table_Type;
   end record with Put_Image => Put_Image;

   procedure Put_Image
     (S : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class; V : Set);

   overriding procedure Adjust (Container : in out Set);

   overriding procedure Finalize (Container : in out Set);

   use HT_Types, HT_Types.Implementation;
   use Ada.Finalization;
   use Ada.Streams;

   procedure Write
     (Stream    : not null access Root_Stream_Type'Class;
      Container : Set);

   for Set'Write use Write;

   procedure Read
     (Stream    : not null access Root_Stream_Type'Class;
      Container : out Set);

   for Set'Read use Read;

   type Set_Access is access all Set;
   for Set_Access'Storage_Size use 0;

   type Cursor is record
      Container : Set_Access;
      --  Access to this cursor's container

      Node      : Node_Access;
      --  Access to the node pointed to by this cursor

      Position  : Hash_Type := Hash_Type'Last;
      --  Position of the node in the buckets of the container. If this is
      --  equal to Hash_Type'Last, then it will not be used. Position is
      --  not requried by the implementation, but improves the efficiency
      --  of various operations.
      --
      --  However, this value must be maintained so that the predefined
      --  equality operation acts as required by RM A.18.7-17/2, which
      --  states: "The predefined "=" operator for type Cursor returns True
      --  if both cursors are No_Element, or designate the same element
      --  in the same container."
   end record;

   procedure Write
     (Stream : not null access Root_Stream_Type'Class;
      Item   : Cursor);

   for Cursor'Write use Write;

   procedure Read
     (Stream : not null access Root_Stream_Type'Class;
      Item   : out Cursor);

   for Cursor'Read use Read;

   subtype Reference_Control_Type is Implementation.Reference_Control_Type;
   --  It is necessary to rename this here, so that the compiler can find it

   type Constant_Reference_Type
     (Element : not null access constant Element_Type) is
      record
         Control : Reference_Control_Type :=
           raise Program_Error with "uninitialized reference";
         --  The RM says, "The default initialization of an object of
         --  type Constant_Reference_Type or Reference_Type propagates
         --  Program_Error."
      end record;

   procedure Read
     (Stream : not null access Root_Stream_Type'Class;
      Item   : out Constant_Reference_Type);

   for Constant_Reference_Type'Read use Read;

   procedure Write
     (Stream : not null access Root_Stream_Type'Class;
      Item   : Constant_Reference_Type);

   for Constant_Reference_Type'Write use Write;

   --  See Ada.Containers.Vectors for documentation on the following

   procedure _Next (Position : in out Cursor) renames Next;

   function Pseudo_Reference
     (Container : aliased Set'Class) return Reference_Control_Type;
   pragma Inline (Pseudo_Reference);
   --  Creates an object of type Reference_Control_Type pointing to the
   --  container, and increments the Lock. Finalization of this object will
   --  decrement the Lock.

   type Element_Access is access all Element_Type with
     Storage_Size => 0;

   function Get_Element_Access
     (Position : Cursor) return not null Element_Access;
   --  Returns a pointer to the element designated by Position.

   Empty_Set : constant Set := (Controlled with others => <>);

   No_Element : constant Cursor :=
     (Container => null, Node => null, Position => Hash_Type'Last);

   type Iterator is new Limited_Controlled and
     Set_Iterator_Interfaces.Forward_Iterator with
   record
      Container : Set_Access;
   end record
     with Disable_Controlled => not T_Check;

   overriding function First (Object : Iterator) return Cursor;

   overriding function Next
     (Object   : Iterator;
      Position : Cursor) return Cursor;
   overriding procedure Finalize (Object : in out Iterator);

end Ada.Containers.Hashed_Sets;